Question

In: Statistics and Probability

A distribution of measurements is relatively mound-shaped with mean 80 and standard deviation 10. (a) What...

A distribution of measurements is relatively mound-shaped with mean 80 and standard deviation 10.

(a) What proportion of the measurements will fall between 70 and 90?


(b) What proportion of the measurements will fall between 60 and 100?


(c) What proportion of the measurements will fall between 60 and 90?


(d) If a measurement is chosen at random from this distribution, what is the probability that it will be greater than 90?

Solutions

Expert Solution


Related Solutions

A distribution of measurements is relatively mound-shaped with mean 30 and standard deviation 5. (a) What...
A distribution of measurements is relatively mound-shaped with mean 30 and standard deviation 5. (a) What proportion of the measurements will fall between 25 and 35? (b) What proportion of the measurements will fall between 20 and 40? (c) What proportion of the measurements will fall between 20 and 35? (d) If a measurement is chosen at random from this distribution, what is the probability that it will be greater than 35?
A distribution of values is normal with a mean of 80 and a standard deviation of...
A distribution of values is normal with a mean of 80 and a standard deviation of 18. From this distribution, you are drawing samples of size 12. Find the interval containing the middle-most 88% of sample means: Enter your answer using interval notation. In this context, either inclusive or exclusive intervals would be acceptable. Your numbers should be accurate to 1 decimal places. Answers obtained using exact z-scores or z-scores rounded to 3 decimal places are accepted.
A distribution of values is normal with a mean of 80 and a standard deviation of...
A distribution of values is normal with a mean of 80 and a standard deviation of 18. From this distribution, you are drawing samples of size 13. Find the interval containing the middle-most 32% of sample means: Incorrect Enter your answer using interval notation. In this context, either inclusive or exclusive intervals would be acceptable. Your numbers should be accurate to 1 decimal places. Answers obtained using exact z-scores or z-scores rounded to 3 decimal places are accepted.
2. If the mean of a distribution is 100 with a standard deviation of 10, what...
2. If the mean of a distribution is 100 with a standard deviation of 10, what raw score is associated with a z-score of +2.003. 3. Using the z-score formula, if you have a distribution with a mean of 50 and a standard deviation of 5, what z-score is associated with a raw score of X=43.5? 4. Using the z-score formula, if you have a distribution with a mean of 50 and a standard deviation of 5, what z-score is...
For a normal population with a mean of u=80 and a standard deviation of o=10, what...
For a normal population with a mean of u=80 and a standard deviation of o=10, what is the probability of obtaining a sample mean less than M=81 for a sample of n=25 scores? Express your answer as a percentage (rounded to two decimal places)
An unknown distribution has a mean of 80 and a standard deviation of 12. A sample...
An unknown distribution has a mean of 80 and a standard deviation of 12. A sample size of 95 is drawn randomly from the population. a. Find the probability that the sum of the 95 values is greater than 7,650. b. Find the probability that the sum of the 95 values is less than 7,400. c. Find the sum that is two standard deviations above the mean of the sums. d. Find the sum that is 1.5 standard deviations below...
An unknown distribution has a mean of 80 and a standard deviation of 12. A sample...
An unknown distribution has a mean of 80 and a standard deviation of 12. A sample size of 95 is drawn randomly from the population. Find the probability that the sum of the 95 values is greater than 7,650.
Suppose x has a distribution with a mean of 80 and a standard deviation of 20....
Suppose x has a distribution with a mean of 80 and a standard deviation of 20. Random samples of size n = 64 are drawn. (a) Describe the x distribution and compute the mean and standard deviation of the distribution. x has distribution with mean μx = and standard deviation σx = . (b) Find the z value corresponding to x = 75. z = (c) Find P(x < 75). (Round your answer to four decimal places.) P(x < 75)...
What is the standard deviation of the standard normal distribution? What is the mean of the...
What is the standard deviation of the standard normal distribution? What is the mean of the standard normal distribution? All symmetric distributions are normal distributions. True or false? Assume body temperature scores are normally distributed in the population with a mean of 36.81°C and a standard deviation of 0.41°C. A person's body temperature is 37.33°C. Calculate their z-score. (Round answer to 2 decimal places) Calculate the z-score for a person who has a body temperature of 35.72°C. (Round answer to...
The distribution of the heights of the first grade students is mound – shaped and symmetric...
The distribution of the heights of the first grade students is mound – shaped and symmetric with the mean height of 140 cm and standard deviation of 5 cm. According Empirical rule What % of heights is between 125 and 155 cm What % of heights is between 135 and 150 cm What % of heights is less than 130 cm What % of heights is less than 130 cm
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT