In: Accounting
What is the variance of the returns on a portfolio comprised of $4,200 of Stock G and $5,300 of Stock H?
State of Economy | Probability of State of Economy |
Rate of Return If State Occurs Stock G, Stock H |
Boom | 0.18 | 0.18, 0.08 |
Normal | 0.82 | 0.14, 0.11 |
Multiple Choice .000248 .001324 .000209 .000000 .000168
Here we first need to compute weight of each stock in the portfolio: | |||||||
Weight = amount invested in stock / total amount | |||||||
Weight of G = 4200 / (4200+5300) | |||||||
0.442105 | |||||||
Weight of H = 5300 / (4200+5300) | |||||||
0.557895 | |||||||
Portfolio return = sum of weight x return | |||||||
Portfolio return (boom) = 0.18 x 0.442105 + 0.08 x 0.557895 | |||||||
0.1242105 | |||||||
Portfolio Return (Normal) =0.14 x 0.442105 + 0.11 x 0.557895 | |||||||
= 0.086 | 0.12326315 | ||||||
State | P | Rp | P x Rp | Rp - ER (Rp-0.12343) | P x (Rp - ER)^2 | ||
Boom | 0.18 | 0.1242105 | 0.02236 | 0.00078 | 0.00000010862 | ||
Normal | 0.82 | 0.1232632 | 0.10108 | -0.0002 | 0.00000002384 | ||
ER | 0.12343 | 0.00000013247 | |||||
Variance = sum of P x (Rp - ER)^2 | |||||||
Variance = | 0.00000013247 | ||||||
Answer is B) | |||||||