In: Accounting
What is the variance of the returns on a portfolio comprised of $4,200 of Stock G and $5,300 of Stock H?
| State of Economy | Probability of State of Economy | 
 Rate of Return If State Occurs Stock G, Stock H  | 
| Boom | 0.18 | 0.18, 0.08 | 
| Normal | 0.82 | 0.14, 0.11 | 
Multiple Choice .000248 .001324 .000209 .000000 .000168
| Here we first need to compute weight of each stock in the portfolio: | |||||||
| Weight = amount invested in stock / total amount | |||||||
| Weight of G = 4200 / (4200+5300) | |||||||
| 0.442105 | |||||||
| Weight of H = 5300 / (4200+5300) | |||||||
| 0.557895 | |||||||
| Portfolio return = sum of weight x return | |||||||
| Portfolio return (boom) = 0.18 x 0.442105 + 0.08 x 0.557895 | |||||||
| 0.1242105 | |||||||
| Portfolio Return (Normal) =0.14 x 0.442105 + 0.11 x 0.557895 | |||||||
| = 0.086 | 0.12326315 | ||||||
| State | P | Rp | P x Rp | Rp - ER (Rp-0.12343) | P x (Rp - ER)^2 | ||
| Boom | 0.18 | 0.1242105 | 0.02236 | 0.00078 | 0.00000010862 | ||
| Normal | 0.82 | 0.1232632 | 0.10108 | -0.0002 | 0.00000002384 | ||
| ER | 0.12343 | 0.00000013247 | |||||
| Variance = sum of P x (Rp - ER)^2 | |||||||
| Variance = | 0.00000013247 | ||||||
| Answer is B) | |||||||