In: Statistics and Probability
Can we predict the running time for Mr. Degges when he runs 3.1 miles on the track at the NDSU Wellness center?
Need: SAS output to analyze the model
Need: prediction equation
y-hat
SSE SST, error, F-test
What variables are significant
The variables are: Y = running time in minutes X1 = weight at the time of running X2 = number of days between running events
Year X1 X2 Y
2009 191.2 1 29.0
2009 192 1 27.80
2009 190.4 2 28.53
2009 190.4 3 28.10
2009 190.6 2 28
2009 190.6 0 27.43
2009 190.2 0 28
2009 191.8 1 27.27
2009 189.2 12 30.52
2009 189.2 0 28.95
2009 190.2 2 29.08
2015 168.6 14 29.92
2015 166.2 4 29.83
2015 165.0 2 28.37
2015 169.8 6 27.25
2015 169.4 4 27.85
2015 167.2 3 27.58
2015 166.6 2 27.10
R² | 0.420 | ||||
Adjusted R² | 0.343 | ||||
R | 0.648 | ||||
Std. Error | 0.809 | ||||
n | 18 | ||||
k | 2 | ||||
Dep. Var. | Y | ||||
ANOVA table | |||||
Source | SS | df | MS | F | p-value |
Regression | 7.1197 | 2 | 3.5598 | 5.43 | .0168 |
Residual | 9.8266 | 15 | 0.6551 | ||
Total | 16.9462 | 17 | |||
Regression output | |||||
variables | coefficients | std. error | t (df=15) | p-value | |
Intercept | 23.4215 | ||||
X1 | 0.0240 | 0.0181 | 1.329 | .2038 | |
X2 | 0.1780 | 0.0541 | 3.291 | .0049 |
The model is significant.
X2 is significant.
The prediction equation is:
Y = 23.4215 + 0.0240*X1 + 0.1780*X2