In: Finance
Stewart is saving for a holiday. He deposits a fixed amount every quarter in a bank account with an EAR of 15%. If this account pays interest every month then how much should he save from each quarterly paycheck in order to have $20,000 in the account in four years' time? Show work
Select one:
a. 861.38
b. 1,143.79
c. 949.47
d. 934.90
c. 949.47
Note: Intermediate calculations are not rounded off.
Step-1:Calculation of Annual percentage rate and then quarterly interest rate | |||||||||||||
Where, | |||||||||||||
((1+(i/n))^n)-1 | = | E | i | Annual percentage rate | ? | ||||||||
((1+(i/4))^4)-1 | = | 0.15 | n | number of times compounding in a year | 4 | ||||||||
(1+(i/4))^4 | 1.15 | E | Effective annual interest rate | 15% | |||||||||
1+(i/4) | 1.035558 | ||||||||||||
i/4 | 0.035558 | ||||||||||||
i | 14.22% | ||||||||||||
So, | |||||||||||||
Annual percentage rate | 14.22% | ||||||||||||
And Quarterly interest rate | 3.56% | ||||||||||||
Step-2:Calculation of quarterly deposit | |||||||||||||
Quarterly deposit | = | Future Value of quarterly deposit/Future value of annuity of 1 | |||||||||||
= | $ 20,000.00 | / | 21.06431 | ||||||||||
= | $ 949.47 | ||||||||||||
Working; | |||||||||||||
Future Value of annuity of 1 | = | (((1+i)^n)-1)/i | Where, | ||||||||||
= | (((1+0.0356)^16)-1)/0.0356 | i | 3.56% | ||||||||||
= | 21.0643074 | n | 16 | ||||||||||