In: Statistics and Probability
3. The Graduate Record Examination (GRE) is a test required for admission to many U.S. graduate schools. Students’ scores on the quantitative portion of the GRE follow a normal. (Source: http://www.ets.org/.) Suppose a random sample of 10 students took the test. 152, 126, 146, 149, 152, 164, 139, 134, 145, 136 A normal probability plot verifies that the data are normally distributed.
a) Determine the sample standard deviation.
b) Construct a 95% confidence interval for the population standard deviation. Interpret interval.
a)
S.No | X | (X-x̄) | (X-x̄)2 | |
1 | 152 | 7.700 | 59.29000 | |
2 | 126 | -18.300 | 334.89000 | |
3 | 146 | 1.700 | 2.89000 | |
4 | 149 | 4.700 | 22.09000 | |
5 | 152 | 7.700 | 59.29000 | |
6 | 164 | 19.700 | 388.09000 | |
7 | 139 | -5.300 | 28.09000 | |
8 | 134 | -10.300 | 106.09000 | |
9 | 145 | 0.700 | 0.49000 | |
10 | 136 | -8.300 | 68.89000 | |
Σx | 1443 | Σ(X-x̄)2= | 1070.1000 | |
x̄=Σx/n | 144.30 | s2=Σ(x-x̄)2/(n-1)= | 118.90000 | |
s=√s2 = | 10.9041 |
from above:
sample standard deviation =10.9041
b)
here n = | 10 | ||
s2= | 118.900 | ||
Critical value of chi square distribution for n-1=9 df and 95 % CI | |||
Lower critical value χ2L= | 2.700 | ||
Upper critical valueχ2U= | 19.023 |
for Confidence interval of standard deviation: | |
Lower bound =√((n-1)s2/χ2U)=sqrt((10-1)*118.9/19.023)= | 7.500 |
Upper bound =√((n-1)s2/χ2L)==sqrt((10-1)*118.9/2.700)= | 19.908 |
from above 95% confidence interval for population standard deviation =(7.5<σ<19.908) |