Question

In: Physics

a 1.0 x 103 kg toyota collides into the rear end of a 2.2 x 103...

a 1.0 x 103 kg toyota collides into the rear end of a 2.2 x 103 kg cadillac stopped as a red light. The bumpers lock, the brakes are locked, and the two cars skid forward 2.8 m before stopping. The police officer,knowing that the coefficient of kinetic friction between the tires and the road was .4 calculated the speed of the toyota at impact. What was that speed? Please show the steps that got you to the answer as that is what I am interested in! thanks

Solutions

Expert Solution


Related Solutions

A 910-kg sports car collides into the rear end of a 2500-kg SUV stopped at a...
A 910-kg sports car collides into the rear end of a 2500-kg SUV stopped at a red light. The bumpers lock, the brakes are locked, and the two cars skid forward 2.5 m before stopping. The police officer, estimating the coefficient of kinetic friction between tires and road to be 0.80, calculates the speed of the sports car at impact. What was the speed sports car at impact? Express your answer to two significant figures and include the appropriate units.
A 1.0-kg standard cart collides on a low-friction track with cart A. The standard cart has...
A 1.0-kg standard cart collides on a low-friction track with cart A. The standard cart has an initial xcomponent of velocity of +0.40 m/s, and cart A is initially at rest. After the collision the x component of velocity of the standard cart is +0.20 m/s and the x component of velocity of cart A is +0.70 m/s . After the collision, cart A continues to the end of the track and rebounds with its speed unchanged. Before the carts...
The momentum of an object is determined to be 7.2 x 103 kg m/s
The momentum of an object is determined to be 7.2 x 103 kg · m/s. Express this quantity as provided or use any equivalent unit. (Note: 1 kg = 1000 g).
A 15.0 kg object moving in the +x direction at 5.5 m/s collides head-on with a...
A 15.0 kg object moving in the +x direction at 5.5 m/s collides head-on with a 11.5 kg object moving in the −x direction at 4.0 m/s . Part A- Find the final velocity of each mass if the objects stick together. Express your answers using two significant figures. Enter your answers numerically separated by a comma. Part B- Find the final velocity of each mass if the collision is elastic. Express your answers using two significant figures. Enter your...
A 5.80 x 103 kg delivery truck moving with a velocity of 20 m/s hits a...
A 5.80 x 103 kg delivery truck moving with a velocity of 20 m/s hits a 1.50 x103 kg parked car. As a result of the impact, the car was set in motion at 31.8 m/s. (Assume the car –truck to be an isolated system) (a) Sketch the situation. (b) Find the velocity of the truck immediately after the collision; (c) Find the kinetic energy of the car-truck system before and after the collision. (d) Is the car-truck collision elastic...
A 0.21 kg hockey puck has a velocity of 2.2 m/s toward the east (the +x...
A 0.21 kg hockey puck has a velocity of 2.2 m/s toward the east (the +x direction) as it slides over the frictionless surface of an ice hockey rink. What are the: (a) magnitude and (b) direction of the constant net force that must act on the puck during a 0.43 s time interval to change the puck's velocity to 3.7 m/s toward the west? and what are the: (c) magnitude and (d) direction if, instead, the velocity is changed...
A 1.0 kg ball and a 2.0 kg ball are connected by a 1.0-m-long rigid, massless...
A 1.0 kg ball and a 2.0 kg ball are connected by a 1.0-m-long rigid, massless rod. The rod is rotating cw about its center of mass at 19rpm . What torque will bring the balls to a halt in 5.0s ? Express your answer to two significant figures and include the appropriate units.
A car of mass 2400 kg collides with a truck of mass 4500 kg, and just...
A car of mass 2400 kg collides with a truck of mass 4500 kg, and just after the collision the car and truck slide along, stuck together, with no rotation. The car's velocity just before the collision was <35, 0, 0> m/s, and the truck's velocity just before the collision was <-10, 0, 21> m/s. What is the increase in internal energy of the car and truck (thermal energy and deformation)?
(c7p50) A 1000- kg car collides with a 1300- kg car that was initially at rest...
(c7p50) A 1000- kg car collides with a 1300- kg car that was initially at rest at the origin of an x-y coordinate system. After the collision, the lighter car moves at 25.0 km/h in a direction of 25 o with respect to the positive x axis. The heavier car moves at 28 km/h at -50 o with respect to the positive x axis. What was the initial speed of the lighter car (in km/h)? Also, What was the initial...
A 1094 kg van, stopped at a traffic light, is hit directly in the rear by...
A 1094 kg van, stopped at a traffic light, is hit directly in the rear by a 727 kg car traveling with a velocity of +2.41 m/s. Assume that the transmission of the van is in neutral, the brakes are not being applied, and the collision is elastic. What is the final velocity of the car?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT