In: Statistics and Probability
In estimating the average price of a gallon of gasoline in a region we plan to select a random sample (independent and identically distributed) of size 10. Let X1 , X2 , ... , X10 denote the selected sample. The four estimators for estimating the average price, mu, are:
U1 = ( X1 + X2 + ... + X10 ) /10
U2 = ( X1 + X2 + ... + X8 ) /8 + X10 - X9
U3 = ( X1 + X2 + ... + X4 ) /4
U4 = X10
Which estimator is preferred for estimating mu?
We prefer the estimator with the lowest MSE where
MSE = Var(Ui) +
Bias(Ui) = E[Ui] -
For U1,
E[U1] = E[( X1 + X2 + ... + X10 ) /10] = (E[ X1] + E[X2]+ ... +
E[X10] ) /10 = (
+
+ ... +
)/10 = 10
/ 10 =
Bias(U1) = E[U1] -
=
-
= 0
Var[U1] = Var[( X1 + X2 + ... + X10 ) /10] = (Var[ X1] +
Var[X2]+ ... + Var[X10] ) /10^2 = (
+
+ ... +
)/100 = 10
/ 100 =
/10
MSE = Var(U1) +
=
/10 = 0.1
For U2,
E[U1] = E[( X1 + X2 + ... + X8 ) /8 + X10 - X9] = (E[ X1] + E[X2]+ ... + E[X8] ) /8 + E[X10] - E[X9]
= (
+
+ ... +
)/8 +
-
= 8
/ 8 =
Bias(U2) = E[U2] -
=
-
= 0
Var[U2] = Var[( X1 + X2 + ... + X8 ) /8 + X10 - X9] = (Var[ X1] + Var[X2]+ ... + Var[X8] ) /8^2 + Var[X10] + Var[X9]
= (
+
+ ... +
)/64 +
+
= 8
/ 64 + 2
= 17
/8
= 2.125
MSE = Var(U2) +
= 2.125
For U3,
E[U1] = E[( X1 + X2 + ... + X4 ) /4] = (E[ X1] + E[X2]+ ... +
E[X4] ) /4 = (
+
+ ... +
)/4 = 4
/ 4 =
Bias(U3) = E[U3] -
=
-
= 0
Var[U3] = Var[( X1 + X2 + ... + X4 ) /4] = (Var[ X1] + Var[X2]+
... + Var[X4] ) /4^2 = (
+
+ ... +
)/16 = 4
/ 16 =
/4
MSE = Var(U1) +
=
/4 = 0.25
For U4,
E[U4] =E[X10] =
Bias(U4) = E[U4] -
=
-
= 0
Var[U4] = Var[X10 ] =
MSE = Var(U4) +
=
The lowest MSE is 0.1for
U1. Thus, we prefer U1 for estimating
.