In: Statistics and Probability
In estimating the average price of a gallon of gasoline in a region we plan to select a random sample (independent and identically distributed) of size 10. Let X1 , X2 , ... , X10 denote the selected sample. The four estimators for estimating the average price, mu, are:
U1 = ( X1 + X2 + ... + X10 ) /10
U2 = ( X1 + X2 + ... + X8 ) /8 + X10 - X9
U3 = ( X1 + X2 + ... + X4 ) /4
U4 = X10
Which estimator is preferred for estimating mu?
We prefer the estimator with the lowest MSE where
MSE = Var(Ui) +
Bias(Ui) = E[Ui] -
For U1,
E[U1] = E[( X1 + X2 + ... + X10 ) /10] = (E[ X1] + E[X2]+ ... + E[X10] ) /10 = ( + + ... + )/10 = 10 / 10 =
Bias(U1) = E[U1] - = - = 0
Var[U1] = Var[( X1 + X2 + ... + X10 ) /10] = (Var[ X1] + Var[X2]+ ... + Var[X10] ) /10^2 = ( + + ... + )/100 = 10 / 100 = /10
MSE = Var(U1) + = /10 = 0.1
For U2,
E[U1] = E[( X1 + X2 + ... + X8 ) /8 + X10 - X9] = (E[ X1] + E[X2]+ ... + E[X8] ) /8 + E[X10] - E[X9]
= ( + + ... + )/8 + - = 8 / 8 =
Bias(U2) = E[U2] - = - = 0
Var[U2] = Var[( X1 + X2 + ... + X8 ) /8 + X10 - X9] = (Var[ X1] + Var[X2]+ ... + Var[X8] ) /8^2 + Var[X10] + Var[X9]
= ( + + ... + )/64 + + = 8 / 64 + 2 = 17/8 = 2.125
MSE = Var(U2) + = 2.125
For U3,
E[U1] = E[( X1 + X2 + ... + X4 ) /4] = (E[ X1] + E[X2]+ ... + E[X4] ) /4 = ( + + ... + )/4 = 4 / 4 =
Bias(U3) = E[U3] - = - = 0
Var[U3] = Var[( X1 + X2 + ... + X4 ) /4] = (Var[ X1] + Var[X2]+ ... + Var[X4] ) /4^2 = ( + + ... + )/16 = 4 / 16 = /4
MSE = Var(U1) + = /4 = 0.25
For U4,
E[U4] =E[X10] =
Bias(U4) = E[U4] - = - = 0
Var[U4] = Var[X10 ] =
MSE = Var(U4) + =
The lowest MSE is 0.1for U1. Thus, we prefer U1 for estimating .