Question

In: Physics

A 75 kg mountain climber hangs stationary from a bungee cord over a steep incline of...

A 75 kg mountain climber hangs stationary from a bungee cord over a steep incline of 80◦ (nearly a vertical wall). The bungee cord has a Hooke constant of k = 550 N/m and is parallel to the incline.

(a) If the climber has a coefficient of friction μs = 0.9 with the incline, how much will the rope deform? Assume that the maximum amount of friction (and thus the minimum deformation).

(b) Suppose the climber loses their grip, reducing this coefficient to only μs = 0.1. Once they come to a stop, what is the rope’s new deformation? Again assume the maximum amount of friction.

there is no figure given

Solutions

Expert Solution


Related Solutions

1. A 93 kg mountain climber hangs from a nylon rope and stretches it by 14.5...
1. A 93 kg mountain climber hangs from a nylon rope and stretches it by 14.5 cm. If the rope was originally 39.0 m long and its diameter is 1.0 cm, what is Young's modulus for the nylon (in Pa)? Group of answer choices 2.21e+09 Pa 3.12e+09 Pa 3.21e+09 Pa 2.12e+09 Pa 6. If a certain mass of water falls a distance of 50.0 meters and all the energy is effective in heating the water, what will be the temperature...
A person is bungee jumping. The bungee cord is attached to a bridge over a river....
A person is bungee jumping. The bungee cord is attached to a bridge over a river. At time t0, before the person jumps (and while she is at rest), the bungee cord is unstretched. At time t1, the cord is stretched and the person is moving downward at her maximum speed. At time t2, the person has fallen her maximum distance and the cord is stretched by its maximum amount. At t3, the person is moving back up toward the...
A 75 kg student jumps off a bridge with a 12-m-long bungee cord tied to his...
A 75 kg student jumps off a bridge with a 12-m-long bungee cord tied to his feet. The massless bungee cord has a spring constant of 430 N/m. a. How far below the bridge is the student’s lowest point? b. How far below the bridge is the student's resting position after the oscillations have been fully damped?
A bungee jumper (mass 80 kg) is attached to a 10 m bungee cord attached to...
A bungee jumper (mass 80 kg) is attached to a 10 m bungee cord attached to the top of a crane. For the first 5 meters of extension, the force exerted by the bungee cord increases by 2 N for every 1 cm. For any further extension, the force increases by only 1.2 N for every 1 cm.. a) Sketch the elastic force vs the length of the bungee cord. b) What is the maximum extension of the bungee cord...
A 74.0-kg bungee jumper steps off a bridge with a light bungee cord tied to her...
A 74.0-kg bungee jumper steps off a bridge with a light bungee cord tied to her and to the bridge. The unstretched length of the cord is 14.0 m. The jumper reaches reaches the bottom of her motion 40.0 m below the bridge before bouncing back. We wish to find the time interval between her leaving the bridge and her arriving at the bottom of her motion. Her overall motion can be separated into an 14.0-m free-fall and a 26.0-m...
An 85.4-kg climber is scaling the vertical wall of a mountain. His safety rope is made...
An 85.4-kg climber is scaling the vertical wall of a mountain. His safety rope is made of nylon that, when stretched, behaves like a spring with a spring constant of 1.19 103 N/m. He accidentally slips and falls freely for 0.815 m before the rope runs out of slack. How much is the rope stretched when it breaks his fall and momentarily brings him to rest?
Four blocks are connected by a weightless cord. Block A hangs from a table on the...
Four blocks are connected by a weightless cord. Block A hangs from a table on the left. Block B and C rest upon the table. Block D hangs from the table on the right. Block A and D are over pulleys. Block B has a weight of 1N, Block C=4N and Block D=7N. a. Find the weight of Block A such that the accelartion of Block B is (g/7) b. Find the coefficient of friction for the table, if the...
A 90 kg student jumps off a bridge with a 10-m-long bungee cord tied to his...
A 90 kg student jumps off a bridge with a 10-m-long bungee cord tied to his feet. The massless bungee cord has a spring constant of 390 N/m. You can assume that the bungee cord exerts no force until it begins to stretch. How far below the bridge is the student's lowest point? How far below the bridge is the student's resting position after the oscillations have been fully damped?
The length of nylon rope from which a mountain climber is suspended has a force constant...
The length of nylon rope from which a mountain climber is suspended has a force constant of 1.18 ✕ 104 N/m. (a) What is the frequency (in Hz) at which he bounces, given that his mass plus the mass of his equipment is 78.0 kg? (b) How much would this rope stretch (in cm) to break the climber's fall if he free-falls 2.00 m before the rope runs out of slack? Hint: Use conservation of energy. (c) Repeat both parts...
The length of nylon rope from which a mountain climber is suspended has a force constant...
The length of nylon rope from which a mountain climber is suspended has a force constant of 1.40  104 N/m. (Hz) (a) What is the frequency at which he bounces, given his mass plus equipment to be 70.0 kg? (m) (b) How much would this rope stretch to break the climber's fall, if he free-falls 2.00 m before the rope runs out of slack? (c) Repeat both parts of this problem in the situation where twice this length of nylon rope...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT