Question

In: Physics

4. Real batteries have an "internal resistance", so a real battery can modeled more or less...

4. Real batteries have an "internal resistance", so a real battery can modeled more or less realistically by an ideal battery in series with a resistor. Suppose the emf of the ideal battery is V and the internal resistance is r; if you connect this battery across a resistor R, find the "terminal voltage" across the battery, the current supplied, and the power dissipated in the battery. Compare this to the power dissipated by the battery if R = 0; in particular, take the ratio between the cases, and look at what happens when r is small. This is why short circuits are a bad idea; there's always a little bit of resistance in a real circuit.

Solutions

Expert Solution


Related Solutions

Very detailed explanation on how a battery operates. The theory in the internal resistance of batteries,...
Very detailed explanation on how a battery operates. The theory in the internal resistance of batteries, how charge is created, EMF, Electrochemical reaction in batteries, etc.
Internal Resistance of a battery lab I'm doing this lab where we have to find the...
Internal Resistance of a battery lab I'm doing this lab where we have to find the internal resistance of a charged and uncharged battery. We got our data by plotting a V vs I graph, and found the internal resistance of each battery using the slopes of the graphs. From my graphs, I can see that the internal resistance of the charged battery is higher than that of the uncharged one. Which makes sense. However, I'm having a hard time...
A battery of ? = 2.10 V and internal resistance R = 0.600 ? is driving...
A battery of ? = 2.10 V and internal resistance R = 0.600 ? is driving a motor. The motor is lifting a 2.0 N mass at constant speed v = 0.50 m/s. Assuming no energy losses, find the current i in the circuit. (a) Enter the lower current. (b) Enter the higher current. (c) Find the potential difference V across the terminals of the motor for the lower current. (d) Find the potential difference V across the terminals of...
A damaged car battery with an emf of 11.4 V and an internal resistance of 0.01...
A damaged car battery with an emf of 11.4 V and an internal resistance of 0.01 ohms is connected to a load of 2.0 ohms. To help the battery, a second battery with an emf of 12.6 V and an internal resistance of 0.01 ohms is connected by jumper cables to the terminals of the first battery. Draw a diagram for the circuit. Find the current in each part of the circuit. Find the power delivered by the second battery.
A 36 V battery of negligible internal resistance is connected to a 47 kΩ and a...
A 36 V battery of negligible internal resistance is connected to a 47 kΩ and a 21 kΩ resistor in series. a). What reading will a voltmeter, of internal resistance 95 kΩ , give when used to measure the voltage across the first resistor? Express your answer using two significant figures. V47 kΩ= b). What is the percent inaccuracy due to meter resistance for each case? Express your answer using two significant figures. V not ideal−V ideal/V ideal= c). What...
The resistance R of a tungsten wire as a function of temperature can be modeled with...
The resistance R of a tungsten wire as a function of temperature can be modeled with the equation R=R0*[1+α(T-T0 ) whereR0 is the resistance corresponding to temperature T0, and α is the temperaturecoefficient of resistance. Determine R0and α such that the equation will best fit the following data (Use linear regression curve fitting). Take T0 = 20°C. T=[20 100 180 260 340 420 500] R=[500 676 870 1060 1205 1410 1565] After enter below codes it gives an error function...
Which of the following statements are true? The internal resistance of a battery decreases with decreasing temperature. A...
Which of the following statements are true? The internal resistance of a battery decreases with decreasing temperature. A battery is a device that produces electricity by transforming chemical energy into electrical energy. The potential difference between the terminals of a battery, when no current flows to an external circuit, is referred to as the terminal voltage. A battery does work on electric charges to bring them to a position of higher electric potential energy so that they can flow through a circuit to a lower...
5. The lifetime of a car battery can be modeled as a Weibull distribution with a=0.9....
5. The lifetime of a car battery can be modeled as a Weibull distribution with a=0.9. a) If the probability that a battery works longer than 10 years is 0.45, find the value of the parameter λ? b) What is the time to which 75% of the battery work?
The circuit shown in (Figure 1) contains two batteries, each with an emf and an internal resistance, and two resistors.
The circuit shown in (Figure 1) contains two batteries, each with an emf and an internal resistance, and two resistors. Part A Find the magnitude of the current in the circuit. Express your answer with the appropriate units.Part C Find the terminal voltage Vab of the 16.0 V battery. Express your answer with the appropriate units. Part D Find the potential difference Vac of point o with respect to point c. Express your answer with the appropriate units. 
A 12.0 V dc battery having no appreciable internal resistance, a 150.5 ohm resistor, an 11.2...
A 12.0 V dc battery having no appreciable internal resistance, a 150.5 ohm resistor, an 11.2 mH inductor, and an open switch are all connected in series. A)After the switch is closed, what is the time constant for this circuit ? 74.4 micro seconds B)After the switch is closed, what is the maximum current that flows through it ? in A C) What is the current 73.4 micro seconds after the switch is closed ? in A D)After the switch...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT