In: Statistics and Probability
Listed below are the durations (in hours) of a simple random sample of all flights of a space shuttle program. Find the range, variance, and standard deviation for the sample data. Is the lowest duration time unusual? Why or why not?
76
90
234
195
165
265
197
372
252
237
384
340
225
245
0
For the given data the range is calculated as Maximum value - Minimum value
a) Range = 384 - 0 = 384
b) Now to calculate the variance of the dataset we need to find the mean as:
Mean = (0 + 76 + 90 + 165 + 195 + 197 + 225 + 234 + 237 + 245 +
252 + 265 + 340 + 372 + 384)/15
= 3277/15
Mean = 218.4667
b) and the variance as
= (1/15 - 1) x ((0 - 218.4667)2 + ( 76 - 218.4667)2 + ( 90 -
218.4667)2 + ( 165 - 218.4667)2 + ( 195 - 218.4667)2 + ( 197 -
218.4667)2 + ( 225 - 218.4667)2 + ( 234 - 218.4667)2 + ( 237 -
218.4667)2 + ( 245 - 218.4667)2 + ( 252 - 218.4667)2 + ( 265 -
218.4667)2 + ( 340 - 218.4667)2 + ( 372 - 218.4667)2 + ( 384 -
218.4667)2)
= (1/14) x ((-218.4667)2 + (-142.4667)2 + (-128.4667)2 +
(-53.4667)2 + (-23.4667)2 + (-21.4667)2 + (6.5333)2 + (15.5333)2 +
(18.5333)2 + (26.5333)2 + (33.5333)2 + (46.5333)2 + (121.5333)2 +
(153.5333)2 + (165.5333)2)
= (0.0714) x ((47727.69900889) + (20296.76060889) +
(16503.69300889) + (2858.68800889) + (550.68600889) +
(460.81920889) + (42.68400889) + (241.28340889) + (343.48320889) +
(704.01600889) + (1124.48220889) + (2165.34800889) +
(14770.34300889) + (23572.47420889) + (27401.27340889))
= (0.0714) x (158763.73333335)
= 11335.73
c) and the sample standard devaiation as:
s =√s2 hence the standard deviation as
= √(11335.730560001)
= 106.4907
d) Since the unusual value is calculated using the Z score which is
calculated as:
Where when Z is les than -2 or greater than 2 we say that the value is unusual.
Now as we can see that the Z score is less than 2 hence the lowest value is unusual.'