Question

In: Physics

A 10.0 kg metal block measuring 12.0 cm X 10.0 cm X 10.0 cm is suspended...

A 10.0 kg metal block measuring 12.0 cm X 10.0 cm X 10.0 cm is suspended from a spring scale (mass meter) and immersed in water. The 12.0 cm dimension is vertical, and the top of the block is 5.00 cm below the water surface. (A) What are the forces acting at the top and bottom of the block? (Take P0 = 1,013 0 X 105 N / m2.) (B) What is the reading on the spring balance? (C) Show that the buoyant force (float) is equal to the difference between the forces at the top and bottom of the block.

Solutions

Expert Solution

The answer for above problem is explained below.


Related Solutions

A 18.0 kg block of metal measuring 12.0 cm by 10.0 cm by 10.0 cm is...
A 18.0 kg block of metal measuring 12.0 cm by 10.0 cm by 10.0 cm is suspended from a scale and immersed in water as shown in the figure below. The 12.0 cm dimension is vertical, and the top of the block is 5.20 cm below the surface of the water. What are the magnitudes of the forces (in N) acting on the top and on the bottom of the block due to the surrounding water? (Use P0 = 1.0130  105...
1)A block of mass m1 = 8.00 kg and a block of mass m2 = 12.0...
1)A block of mass m1 = 8.00 kg and a block of mass m2 = 12.0 kg are connected by a massless string over a pulley in the shape of a solid disk having radius R = 0.350 m and mass M = 12.0 kg. The coefficient of kinetic friction between block m1 and the table is 0.27. a) Draw force diagrams of both blocks and of the pulley. b) Determine the acceleration of the two blocks. c) Determine the...
(a) A block of mass m = 3.90 kg is suspended as shown in the diagram...
(a) A block of mass m = 3.90 kg is suspended as shown in the diagram below. Assume the pulley to be frictionless and the mass of the strings to be negligible. If the system is in equilibrium, what will be the reading of the spring scale in newtons? N (b) Two blocks each of mass m = 3.90 kg are connected as shown in the diagram below. Assume the pulley to be frictionless and the mass of the strings...
Two thin lenses each with focal lengths of f1 = +12.0 cm and f2 = +10.0...
Two thin lenses each with focal lengths of f1 = +12.0 cm and f2 = +10.0 cm; are located 30.0 cm apart with their optical axes aligned as shown. An object is placed 35.0 cm from the first lens. After the light has passed through both lenses, at what distance from the second lens will the final image be formed?
A 12.0-kg block is pushed across a rough horizontal surface by a force that is angled...
A 12.0-kg block is pushed across a rough horizontal surface by a force that is angled 30.0◦ below the horizontal. The magnitude of the force is 75.0 N and the acceleration of the block as it is pushed is 3.20 m/s2 . What is the magnitude of the contact force exerted on the block by the surface?
A block having a mass of 10.0 kg is pressed against the wall by a hand...
A block having a mass of 10.0 kg is pressed against the wall by a hand exerting a force F inclined at an angle θ of 52° to the wall as shown below. The coefficient of static friction µstat between the block and the wall is 0.20. We shall investigate the question of how large the force F must be to keep the block from sliding along the wall. There is more physics here than initially meets the eye. Think...
A mass m = 1 kg is suspended from a spring that is stretched 1 cm...
A mass m = 1 kg is suspended from a spring that is stretched 1 cm under the influence of the weight of this mass. Now a periodic force is applied external of F (t) = 200 cos (vt) on the mass, which was initially in static balance. Disregarding all friction, get a relationship for position of the mass as a function of time, x (t). Also determine the value of ω which will cause resonance to occur
A 10 cm x 10 cm x 10 cm block of steel (density of steel =7900...
A 10 cm x 10 cm x 10 cm block of steel (density of steel =7900 kg/m3) is suspended from a spring scale. The scaleis in newtons. a.     What is the scale reading if theblock is in air? b.     What is the scale reading after theblock has been lowered into a beaker of oil and is completelysubmerged?
Show a complete solution to the following question. A 10.0 kg block is being held in...
Show a complete solution to the following question. A 10.0 kg block is being held in place at the top of a rough ramp which is at a 45 o angle to the horizontal. The coefficient of static friction between the ramp and the block is 0.15 and the coefficient of kinetic friction is 0.10. There is a spring at the bottom of the ramp lying parallel to the ramp and it obeys Hooke’s Law. The spring constant is 1200...
A block of mass M = 10.0 kg is given an initial speed v0 = 2.10...
A block of mass M = 10.0 kg is given an initial speed v0 = 2.10 m/s from height hi down a frictionless incline plane of angle θ = 75◦. After it reaches the bottom of the incline, it continues to slide on a horizontal surface of coefficient of kinetic friction µk = 0.15. After sliding a distance d = 1.8 m along the horizontal surface, the block moves at a speed v = 7.00 m/s. Magnitude of acceleration due...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT