Question

In: Physics

Needs to document an amusement park ride. For example: Round rotating cylinder where the floor drops...


Needs to document an amusement park ride. For example: Round rotating cylinder where the floor drops out. The information can come from any online website. Needs to know the radius and speed at which the ride needs to rotate so that you don't fall?


Calculate the coefficient of static friction for this ride also

Solutions

Expert Solution

There is no force pressing them against the wall. The forces involved are:

1. gravity (acting downwards of course),
2. friction (counteracting gravity)
3. centripetal force of rotation (acting from the center of the cylinder into the wall of the cylinder)
4. normal force (counteracting the centripetal force)

The force of gravity is simply (mg). In order for the friction to be sufficient to keep a person from falling, the frictional force must be (-mg).

Frictional force for an object at rest (static friction) is F = ?N where ? is the co-efficient of static friction andN is the normal force from the wall towards the person. Therefore, ? = F/N. But F = mg, so ? = mg/N.

The magnitude of the normal force is simply the same as the centripetal force because you don't fall through or lift off the side of the cylinder. Centripetal force is calculated as F = ma where a is the centripetal acceleration.
So ? = mg / N = mg / ma = g / a.

However, centripetal acceleration is a = v2/r where v is the tangential velocity and r is the radius of the cylinder. The tangential velocity is v = ?r, where ? is the angular velocity in radians per unit time.
Thus ? = g / a = g / (r?2).

Now you have an equation for the coefficient of static friction (?) in terms of the radius (r) and the angular velocity (?), which you know.

You'll need to convert your angular velocity from revolutions per second to radians per second before substituting for g, r and ?.


Related Solutions

At amusement parks, there is a popular ride where the floor of a rotating cylindrical room...
At amusement parks, there is a popular ride where the floor of a rotating cylindrical room falls away, leaving the backs of the riders "plastered" against the wall. Suppose the radius of the room is 4.24 m and the speed of the wall is 16.2 m/s when the floor falls away. The source of the centripetal force on the riders is the normal force provided by the wall. (a) How much centripetal force acts on a 53.0 kg rider? (b)...
In an amusement park ride called The Roundup, passengers stand inside a 19.0 m -diameter rotating...
In an amusement park ride called The Roundup, passengers stand inside a 19.0 m -diameter rotating ring. After the ring has acquired sufficient speed, it tilts into a vertical plane a)Suppose the ring rotates once every 4.50 s . If a rider's mass is 55.0 kg , with how much force does the ring push on her at the top of the ride? b)Suppose the ring rotates once every 4.50 s . If a rider's mass is 55.0 kg ,...
In an old-fashioned amusement park ride, passengers stand inside a 5.0-m-diameter hollow steel cylinder with their...
In an old-fashioned amusement park ride, passengers stand inside a 5.0-m-diameter hollow steel cylinder with their backs against the wall. The cylinder begins to rotate about a vertical axis. Then the floor on which the passengers are standing suddenly drops away! If all goes well, the passengers will "stick" to the wall and not slide. Clothing has a static coefficient of friction against steel in the range 0.62 to 1.0 and a kinetic coefficient in the range 0.40 to 0.70....
In an old-fashioned amusement park ride, passengers stand inside a 4.5-m-diameter hollow steel cylinder with their...
In an old-fashioned amusement park ride, passengers stand inside a 4.5-m-diameter hollow steel cylinder with their backs against the wall. The cylinder begins to rotate about a vertical axis. Then the floor on which the passengers are standing suddenly drops away! If all goes well, the passengers will "stick" to the wall and not slide. Clothing has a static coefficient of friction against steel in the range 0.65 to 1.0 and a kinetic coefficient in the range 0.40 to 0.70....
For questions 5 – 6, assume that to ride the Whirling Dervish at an amusement park,...
For questions 5 – 6, assume that to ride the Whirling Dervish at an amusement park, riders must be no taller than 75 in. Assume that men have normally distributed heights with a mean of 70 in. and a standard deviation of 2.8 in. 5. Find the percentage of men who will not meet the height requirement. Round to two percentage decimal places (for example, 38.29%). 6. If the height requirement is changed so that only the tallest 5% of...
For questions 5 – 6, assume that to ride the Whirling Dervish at an amusement park,...
For questions 5 – 6, assume that to ride the Whirling Dervish at an amusement park, riders must be no taller than 75 in. Assume that men have normally distributed heights with a mean of 70 in. and a standard deviation of 2.8 in. 5. Find the percentage of men who will not meet the height requirement. Round to two percentage decimal places (for example, 38.29%). 6. If the height requirement is changed so that only the tallest 5% of...
An amusement park ride consists of a cylindrical chamber of radius R that can rotate. The...
An amusement park ride consists of a cylindrical chamber of radius R that can rotate. The riders stand along the wall and the chamber begins to rotate. Once the chamber is rotating fast enough (at a constant speed), the floor of the ride drops away and the riders remain "stuck" to the wall. The coefficients of friction between the rider and the wall are us and uk. 1. Draw a free body diagram of a rider of mass m after...
A pair of bumper cars in an amusement park ride collide elastically as one approaches the...
A pair of bumper cars in an amusement park ride collide elastically as one approaches the other directly from the rear, as seen in part (a) of the figure below. ((a) before collision, (b) after collision) One has a mass of m1 = 462 kg and the other m2 = 546 kg, owing to differences in passenger mass. If the lighter one approaches at v1 = 4.48 m/s and the other is moving at v2 = 3.63 m/s, calculate the...
In an amusement park ride, a 4m long lightweight rod connects the center motorized pivot to...
In an amusement park ride, a 4m long lightweight rod connects the center motorized pivot to a car. The motor applies a couple of 30t2 Nm, and another motor in the car generates a forward force F=15t N. The mass of the car and rider is 150 kg. If the car starts from rest, a. Determine the speed of the car at t = 10 s. b. At t=10s, the center motor is switched off and spins freely, but the...
An amusement park has estimated the following demand equation for the average park guest Q=16-2P Where...
An amusement park has estimated the following demand equation for the average park guest Q=16-2P Where Q represents the number of rides per guest and P the price per ride. The total cost of providing rides to a guest is TC=2+0.5Q If a one-price policy is used, how much should it charge per ride if the park wishes to maximize its profit? What is the park's profit for each guest? If a two-part tariff policy is used, what admission fee...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT