Question

In: Physics

Aliens are observing a park in new york. They notice a merry-go-round has a radius of...

Aliens are observing a park in new york. They notice a merry-go-round has a radius of 3.12m and a moment of inertia of 3100kgm^2 at the vertical axis through the center. The contraption has been lubricated recently so there is no friction. one of the earthlings applies a tangential force of 19N for 13s begging at rest. Unfortunaley after gathering this data the aliens computer broke so now they must calculate the work that was done over the course of the 13s.

Solutions

Expert Solution

Force applied = F = 19 N, Radius of the wheel ( of merry - go - round ) = R = 3.12 m,

Moment of intertia of it = I = 3100 kg . m / s2.

Let the angular acceleration be .

Hence, torque applied = = F x R = I x

or, = FR / I = ( 19 x 3.12 ) / 3100 rad / s2

or, = 0.02 rad / s2.

Initial angular velocity = 0 rad / s.

Hence, final angular velocity after t = 13 s : = x t = ( 0.02 x 13 ) rad / s = 0.26 rad / s.

Hence, work done in this 13 s : W = Change in rotational kinetic energy ( from work - energy theorem )

or, W = Final kinetic energy - Initial kinetic energy = ( I2 / 2 ) - 0

or, W = ( 3100 x 0.262 / 2 ) J = 104.78 Joule.


Related Solutions

A playground merry-go-round of radius ? = 2.0 m has a moment of inertia ? =...
A playground merry-go-round of radius ? = 2.0 m has a moment of inertia ? = 250 kg ⋅ m^2 is rotating at 15 rpm about a frictionless, vertical axle. Facing the axle, a 25-kg child hops onto the merry-goround and manages to sit down on the edge. (a) (10 pts) What is the total angular momentum of the ‘merry-go-round-child’ system before and after the child hops on the the merry-go-round? (b) (10 pts) What is the new angular speed,...
A girl stands on the rim of a merry-go-round of radius 2.0 m that is not...
A girl stands on the rim of a merry-go-round of radius 2.0 m that is not moving. The rotational inertia of the merry-go-round (including the girl’s inertia) is 800 kg∙m2. She throws a rock of mass 0.5 kg horizontally in a direction that is tangent to the outer edge of the merry-go-round. The speed of the rock, relative to the ground, is 4.0 m/s. (a) What is the angular speed of the merry-go-round? (b) What is the speed of the...
Consider the child's playground merry-go-round wheel. Merry Go Round If the steel disk has mass of...
Consider the child's playground merry-go-round wheel. Merry Go Round If the steel disk has mass of 200 kg and a radius of 2 meters you can make it spin by applying a force to the rim. This torque increases the angular momentum of the disk. Suppose the force is 20 newtons. How long would you have to apply it to get the wheel spinning 5 times a minute? What would happen to the rate of spin if you then jumped...
A 2.20-m radius playground merry-go-round has a mass of 101.5 kg and is rotating with an...
A 2.20-m radius playground merry-go-round has a mass of 101.5 kg and is rotating with an angular velocity of 0.91 rev/s. What is its angular velocity after a 38.4-kg child gets onto it by grabbing its outer edge? The child is initially at rest. Express your answer in revs/s.
A merry-go-round with a a radius of R = 1.98 m and moment of inertia I...
A merry-go-round with a a radius of R = 1.98 m and moment of inertia I = 193 kg-m2 is spinning with an initial angular speed of ω = 1.45 rad/s in the counter clockwise direection when viewed from above. A person with mass m = 67 kg and velocity v = 4.9 m/s runs on a path tangent to the merry-go-round. Once at the merry-go-round the person jumps on and holds on to the rim of the merry-go-round. 1)...
2) A merry-go-round has a radius of 1.75 m and a rotational inertia of 600 km-m2....
2) A merry-go-round has a radius of 1.75 m and a rotational inertia of 600 km-m2. A child pushes the merry-go-round with a constant force of 102 N applied at the edge and parrallel to the edge. A frictional torque of 32 N.m acts at the axel of the merry-go-round. a) What is the torque applied by the child? b) What is the rotational acceleration of merry-go-round? c) The child stops pushing after 18 seconds, if merry-go-round had started from...
A merry-go-round consists of a uniform ring of mass 2M and radius R attached to a...
A merry-go-round consists of a uniform ring of mass 2M and radius R attached to a central post with four light, uniform rods, each of mass M/4 and length R. Identical twins sit opposite one another where two of the rods join the ring. The mass of each child is M. At time t = 0, the system is rotating with angular speed ω0. The twins then simultaneously pull themselves toward one another along their respective rods, until each twin...
1.) A playground merry-go-round with a radius of 1.75 m and a rotational inertia of 124.5...
1.) A playground merry-go-round with a radius of 1.75 m and a rotational inertia of 124.5 kgm2 is stationary. A robot with a mass of 32.5 kg gets on and walks around the edge of the merry-go-round. How many revolutions around the merry-go-round must the robot make in order for the merry-go-round to make two full revolutions? 2.) A student has an idea for a special record player that uses no electricity. The base is a circular turntable that floats...
A merry-go-round with a moment of inertia of 750 kgm^2 and a radius of 2.55 m...
A merry-go-round with a moment of inertia of 750 kgm^2 and a radius of 2.55 m is rotating with an angular velocity of 9.42 rad/s clockwise (as viewed from above.) A child, whose weight is 334 N, runs at 2.76 m/s tangent to the rim of the merry-go-round and jumps onto it in the direction opposite of its sense of rotation. With what angular speed does the merry-go-round rotate after the child jumps onto its edge? I'm pretty sure the...
Suppose a child gets off a rotating merry-go-round. Does the angular velocity of the merry-go-round increase,...
Suppose a child gets off a rotating merry-go-round. Does the angular velocity of the merry-go-round increase, decrease, or remain the same if: (a) He jumps off radially? (b) He jumps backward to land motionless? (c) He jumps straight up and hangs onto an overhead tree branch? (d) He jumps off forward, tangential to the edge?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT