Question

In: Statistics and Probability

Consider the following ARMA(1,1) process (1 − 0.3B)Xt = (1 − 0.2B)Zt where{Zi}∼WN(0,σ^2)withE(Z1)=0andVar(Z1)=σ^2 <∞. (i) Discuss...

Consider the following ARMA(1,1) process

(1 − 0.3B)Xt = (1 − 0.2B)Zt where{Zi}∼WN(0,σ^2)withE(Z1)=0andVar(Z1)=σ^2 <∞.

(i) Discuss if the process has a causal stationary solution.

(ii) Find an MA(∞) representation for Xt.

(iii) Find the autocorrelation function for the process {Xt}.

Solutions

Expert Solution


Related Solutions

1. Consider the process {Xt} in which Xt = Zt + 0.5Zt-1 - 2Zt-2. Investigate the...
1. Consider the process {Xt} in which Xt = Zt + 0.5Zt-1 - 2Zt-2. Investigate the stationarity of the process under the following conditions. Calculate the ACF for the stationary models. (a) Zt ~ WN(0,(sigma)2) ; (sigma)2 < infinity (b) {Zt } is a sequence of i.i.d random variables with the following distribution: fzt(z) = 2/z3 ; z > 1
Show that the AR(2) process Xt=X(t-1)+cX(t-2)+Zt is stationary provided by-1<c<0. Find the autocorrelation function when c=-3/16....
Show that the AR(2) process Xt=X(t-1)+cX(t-2)+Zt is stationary provided by-1<c<0. Find the autocorrelation function when c=-3/16. Show that the AR(3) process Xt=X(t-1)+cX(t-2)-cX(t-2)+Zt is non-stationary for all values of c.
Consider the time series Xt = 4t + Wt + 0.9Wt−1, where Wt ∼ N(0, σ2...
Consider the time series Xt = 4t + Wt + 0.9Wt−1, where Wt ∼ N(0, σ2 ). (i)What are the mean function and the variance function of this time series? Is this time series stationary? Justify your answer (ii). Consider the first differences of the time series above, that is, consider Yt = Xt − Xt−1. What are the mean function and autocovariance function of this time series? Is this time series stationary? Justify your answer
. Define the stochastic process Xt=2A+3Bt where PA=2=PA=-2=PB=2=PB=-2=0.5. Find PXt≥0 | t  
. Define the stochastic process Xt=2A+3Bt where PA=2=PA=-2=PB=2=PB=-2=0.5. Find PXt≥0 | t  
Consider the language L1 over alphabet Σ = { 0, 1 } where the production rules...
Consider the language L1 over alphabet Σ = { 0, 1 } where the production rules for L1 are as follows: S → TT S → U T → 0T T → T0 T→ 1 U → 0U00 U → 1 Q → λ P → QU Transform this grammar into Chomsky Normal Form, consistent with the CNF specification in the Quick Reference, and using only Variables { S, T, U, V, W, X }. Implement that CNF grammar in...
2. i. Consider a binary source alphabet where a symbol 0 is represented by 0 volt...
2. i. Consider a binary source alphabet where a symbol 0 is represented by 0 volt and a symbol 1 is represented by 1 volt. Assume these symbols are transmitted over a baseband channel having uniformly distributed noise with a probability density function:         px= {18 for-4≤x≤4 0 Assume that the single decision threshold T is in the range of 0 and l volt. If the symbols 0 and 1 are sent with probabilities p0 and 1- p0 respectively, derive...
2. Consider the stochastic process {Xn|n ≥ 0}given by X0 = 1, Xn+1 = I{Xn =...
2. Consider the stochastic process {Xn|n ≥ 0}given by X0 = 1, Xn+1 = I{Xn = 1}Un+1 + I{Xn 6= 1}Vn+1, n ≥ 0, where {(Un, Vn)|n ≥ 1} is an i.i.d. sequence of random variables such that Un is independent of Vn for each n ≥ 1 and U1−1 is Bernoulli(p) and V1−1 is Bernoulli(q) random variables. Show that {Xn|n ≥ 1} is a Markov chain and find its transition matrix. Also find P{Xn = 2}.
Consider the standard normal curve, where μ=0 and σ=1. Find the value z so that 90%...
Consider the standard normal curve, where μ=0 and σ=1. Find the value z so that 90% of the area under the curve is between −z and z . Give your answer to 4 decimal places.
Consider the model: yi = βxi + ei, i = 1,...,n where E(ei) = 0 and...
Consider the model: yi = βxi + ei, i = 1,...,n where E(ei) = 0 and Variance(ei) = σ2 and ei(s) are non-correlated errors. a) Obtain the minimum-square estimator for β and propose an unbiased estimator for σ2. b) Specify the approximate distribution of the β estimator. c) Specify an approximate confidence interval for the parameter β with confidence coefficient γ, 0 < γ < 1.
Econometrics Question: Consider the data generating process Y= β1+ β2Xi+β3Zi+β4Wi+β5Pi+β6Ti+e e~N(0, σ^2) i. Write the null hypothesis...
Econometrics Question: Consider the data generating process Y= β1+ β2Xi+β3Zi+β4Wi+β5Pi+β6Ti+e e~N(0, σ^2) i. Write the null hypothesis H0: β4=5 and β2+β3=0 and 2β5-4β6=0 in Rβ-q notation. ii. Discuss how would test these conjectures in practice assuming that the variance is known. iv. Discuss how you would test the null-hypothesis Ho: β2/β3= β4 against Ha: β2/β3≠β4.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT