Question

In: Economics

An economy has a Cobb-Douglas production function: Y=K^α(LE)^1-α The economy has a capital share of 1/3,...

An economy has a Cobb-Douglas production function:

Y=K^α(LE)^1-α

The economy has a capital share of 1/3, a saving rate of 24 percent, a depreciation rate of 3 percent, a rate of population growth of 2 percent, and a rate of labor-augmenting technological change of 1 percent. It is in steady state.

A. At what rates do total output, output per worker, and output per effective worker grow?
B. Solve for capital per effective worker, output per effective worker, and the marginal product of capital. C. Does the economy have more or less capital than the Golden Rule steady state? Explain. To achieve the Golden Rule steady state, does the saving rate need to increase or decrease?
D. Suppose the change in the saving rate you described in part C occurs. During the transition to the Golden Rule steady state, will the growth rate of output per worker be higher or lower than the rate you derived in part A? After the economy reaches its new steady state, will the growth rate of output per worker be higher or lower than the rate you derived in part A. Explain your answers.

Solutions

Expert Solution


Related Solutions

An economy has a Cobb–Douglas production function: Y=K^α(LE)^1-α The economy has a capital share of 0.35,...
An economy has a Cobb–Douglas production function: Y=K^α(LE)^1-α The economy has a capital share of 0.35, a saving rate of 43 percent, a depreciation rate of 3.50 percent, a rate of population growth of 3.50 percent, and a rate of labor-augmenting technological change of 2.5 percent. It is in steady state. a.) Solve for capital per effective worker (k*), output per effective worker (y*), and the marginal product of capital. K*=? y*=? marginal product of capital= ?
An economy has a cobb-douglas production function: Y=K^(a)(LE)^(1-a) The economy has a capital share of 1/3,...
An economy has a cobb-douglas production function: Y=K^(a)(LE)^(1-a) The economy has a capital share of 1/3, a saving rate of 24%, a depreciation rate of 3%, and a rate of population growth of 2%, and a rate of labor-augmenting technological change of 1%. It is in steady state. a) At what rates do total output, output per worker, and output per effective worker grow? b) solve for capital per effective worker, output per effective worker, and the marginal product of...
An economy has the following Cobb-Douglas production function: Y = Ka(LE)1-a The economy has a capital...
An economy has the following Cobb-Douglas production function: Y = Ka(LE)1-a The economy has a capital share of 1/3, a saving rate of 24 percent, a depreciation rate of 3 percent, a rate of population growth of 2 percent, and a rate of labor-augmenting technological change of 1 percent. It is in steady state. a. What is the steady-state growth rate in total output? b.  What is the steady-state growth rate in output per worker? c.  What is the steady-state growth rate...
Suppose that an economy has a Cobb-Douglas production function with three inputs. K is capital (the...
Suppose that an economy has a Cobb-Douglas production function with three inputs. K is capital (the number of machines), L is labor (the number of workers), and H is human capital (the number of college degrees among workers). Markets for output and factors of production are both competitive. The production function is Y = K^1/3*L^1/3*H^1/3 1. Prove that this technology shows constant returns to scale. 2. Solve the competitive firm’s profit maximization problem by deriving the first-order conditions. 3. An...
Cobb-Douglas...again Consider the Cobb-Douglas production function function of the form, q(k, l) = k α l...
Cobb-Douglas...again Consider the Cobb-Douglas production function function of the form, q(k, l) = k α l 1−α (a) Determine the relation between α and the marginal product of k and l. For what values of α is the marginal product for each input: (i) increasing, (ii) constant, and, (iii) decreasing. (b) Show that the marginal rate of technical substitution (MRTS) is equal to α 1 − α l k . For what values of α is MRTS decreasing in k?...
Question 1: Show that the Cobb-Douglas Production function Y = zKαN1−α, where 0 < α <...
Question 1: Show that the Cobb-Douglas Production function Y = zKαN1−α, where 0 < α < 1, satisfies all assumptions made in lecture 5. Assumptions: 1) Output increases when either the capital stock or the number of workers increase 2) Both the marginal product of capital and the marginal product of labor are decreasing 3) The marginal product of labor increases when capital increases, and the marginal product of capital increases when labor increases 4) For any constant x >...
Consider an economy with the following Cobb-Douglas production function: Y = K1/3L 2/3 .
Consider an economy with the following Cobb-Douglas production function: Y = K1/3L 2/3 . The economy has 1,000 units of capital and a labor force of 1,000 workers. 1a. Derive an equation describing labor demand as a function of the real wage and the capital stock. (Hint: this is a review from what we did in Chapter 3)b. If the real wage can adjust to equilibrate labor supply and labor demand, what is the resulting equilibrium real wage? In this...
The total production of a particular commodity is given by the Cobb-Douglas function: f(x,y)=bx^α*y^(1−α), b is...
The total production of a particular commodity is given by the Cobb-Douglas function: f(x,y)=bx^α*y^(1−α), b is a given positive constant and 0<α<1 . Assume that we want to maximize production with a given cost constraint mx+ny−p=0 where m and n are the cost of a unit of labour and a unit of capital, respectively, and p the total cost. Show that each term will always be negative guaranteeing a maximum (in the sufficiency H test) using the values obtained of...
Consider the Cobb-Douglas production function Y = eb0 K b1 Lb2 eui where Y, K and...
Consider the Cobb-Douglas production function Y = eb0 K b1 Lb2 eui where Y, K and L denote real output, real capital input, and real labor input, respectively. The data for estimating the parameters of the production function are given in the Excel data file productionfunction.xls. Perform a logarithmic transformation of the production function to linearity so that it can be estimated by OLS. Compute the correlation coefficient between income lnK and lnL and comment on the potential for multicollinearity....
Consider an economy with the following Cobb-Douglas production function:
Chapter 7, Labor Market Regulation (3 points):• Consider an economy with the following Cobb-Douglas production function:Y =k^1/3L^2/3The economy has 1,000 units of capital and a labor force of 1,000 workers.(a) Derive the equation describing labor demand in this economy as a function of the real wage and the capital stock (Hint: Review Chapter 3.)(b) If the real wage can adjust to equilibrate labor supply and labor demand, what is the real wage? In this equilibrium, what are employment, output, and...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT