In: Finance
An investment project has the following cash flows: CF0 = -1,200,000; C01 – C05 = 300,000 each
If the required rate of return is 12%, calculate IRR= ( )%.
Computation of IRR using trial and error method:
Let’s compute NPV at discount rate of 7 %
| 
 Year  | 
 Cash Flow (C)  | 
 Computation of PV Factor  | 
 PV Factor @ 7 % (F)  | 
 PV (C x F)  | 
| 
 0  | 
 -$1,200,000  | 
 1/ (1+0.07)0  | 
 1  | 
 -$1,200,000  | 
| 
 1  | 
 300,000  | 
 1/ (1+0.07)1  | 
 0.9345794392523  | 
 280,373.831776  | 
| 
 2  | 
 300,000  | 
 1/ (1+0.07)2  | 
 0.8734387282732  | 
 262,031.618482  | 
| 
 3  | 
 300,000  | 
 1/ (1+0.07)3  | 
 0.8162978768909  | 
 244,889.363067  | 
| 
 4  | 
 300,000  | 
 1/ (1+0.07)4  | 
 0.7628952120475  | 
 228,868.563614  | 
| 
 5  | 
 300,000  | 
 1/ (1+0.07)5  | 
 0.7129861794837  | 
 213,895.853845  | 
| 
 NPV1  | 
 $30,059.230784  | 
As NPV is positive, let’s compute NPV at discount rate of 8 %
| 
 Year  | 
 Cash Flow (C)  | 
 Computation of PV Factor  | 
 PV Factor @ 8 % (F)  | 
 PV (C x F)  | 
| 
 0  | 
 -$1,200,000  | 
 1/ (1+0.08)0  | 
 1  | 
 -$1,200,000  | 
| 
 1  | 
 300,000  | 
 1/ (1+0.08)1  | 
 0.9259259259259  | 
 277,777.777778  | 
| 
 2  | 
 300,000  | 
 1/ (1+0.08)2  | 
 0.8573388203018  | 
 257,201.646091  | 
| 
 3  | 
 300,000  | 
 1/ (1+0.08)3  | 
 0.7938322410202  | 
 238,149.672306  | 
| 
 4  | 
 300,000  | 
 1/ (1+0.08)4  | 
 0.7350298527965  | 
 220,508.955839  | 
| 
 5  | 
 300,000  | 
 1/ (1+0.08)5  | 
 0.6805831970338  | 
 204,174.959110  | 
| 
 NPV2  | 
 -$2,186.988877  | 
IRR = R1 + [NPV1 x (R2 – R1)/ (NPV1 – NPV2)]
= 7 % + [$ 30,059.230784 x (8 % - 7%)/ ($ 30,059.230784– (-$ 2,186.988877))]
= 7 % + [($ 30,059.230784 x 1 %)/ ($ 30,059.230784 + $ 2,186.988877)]
= 7 % + ($ 300.59230784/ $ 32246.219661)
= 7 % + 0.009321784
= 7 % + 0.93 % = 7.93 %
IRR of the project is 7.93 %