In: Finance
An investment project has the following cash flows: CF0 = -1,200,000; C01 – C05 = 300,000 each
If the required rate of return is 12%, calculate IRR= ( )%.
Computation of IRR using trial and error method:
Let’s compute NPV at discount rate of 7 %
Year |
Cash Flow (C) |
Computation of PV Factor |
PV Factor @ 7 % (F) |
PV (C x F) |
0 |
-$1,200,000 |
1/ (1+0.07)0 |
1 |
-$1,200,000 |
1 |
300,000 |
1/ (1+0.07)1 |
0.9345794392523 |
280,373.831776 |
2 |
300,000 |
1/ (1+0.07)2 |
0.8734387282732 |
262,031.618482 |
3 |
300,000 |
1/ (1+0.07)3 |
0.8162978768909 |
244,889.363067 |
4 |
300,000 |
1/ (1+0.07)4 |
0.7628952120475 |
228,868.563614 |
5 |
300,000 |
1/ (1+0.07)5 |
0.7129861794837 |
213,895.853845 |
NPV1 |
$30,059.230784 |
As NPV is positive, let’s compute NPV at discount rate of 8 %
Year |
Cash Flow (C) |
Computation of PV Factor |
PV Factor @ 8 % (F) |
PV (C x F) |
0 |
-$1,200,000 |
1/ (1+0.08)0 |
1 |
-$1,200,000 |
1 |
300,000 |
1/ (1+0.08)1 |
0.9259259259259 |
277,777.777778 |
2 |
300,000 |
1/ (1+0.08)2 |
0.8573388203018 |
257,201.646091 |
3 |
300,000 |
1/ (1+0.08)3 |
0.7938322410202 |
238,149.672306 |
4 |
300,000 |
1/ (1+0.08)4 |
0.7350298527965 |
220,508.955839 |
5 |
300,000 |
1/ (1+0.08)5 |
0.6805831970338 |
204,174.959110 |
NPV2 |
-$2,186.988877 |
IRR = R1 + [NPV1 x (R2 – R1)/ (NPV1 – NPV2)]
= 7 % + [$ 30,059.230784 x (8 % - 7%)/ ($ 30,059.230784– (-$ 2,186.988877))]
= 7 % + [($ 30,059.230784 x 1 %)/ ($ 30,059.230784 + $ 2,186.988877)]
= 7 % + ($ 300.59230784/ $ 32246.219661)
= 7 % + 0.009321784
= 7 % + 0.93 % = 7.93 %
IRR of the project is 7.93 %