Question

In: Physics

Consider a cylindrical capacitor made out of two "long" metal cylindrical shells of length L. The...

Consider a cylindrical capacitor made out of two "long" metal cylindrical shells of length L. The outer one has a radius R and the inner one has a radius r. Now Q Coulombs of charge are removed from the outer cylinder and moved to the inner cylinder.

-Using Gauss's Law, derive an expression for the field in the gap between cylindrical shells. Please state the

symmetry argument clearly as well as choice for Gaussian surface used and why.

-Now that you have the field, take a unit positive charge for a "walk" from one cylinder to the other and find the work done,

and thus calculate the capacitance of the cylindrical capacitor.

Solutions

Expert Solution



Related Solutions

A cylindrical capacitor consists of a cylinder (of length L and radius a) with a total...
A cylindrical capacitor consists of a cylinder (of length L and radius a) with a total charge Q nested inside a thin conducting cylindrical shell (of length L and radius b) with total charge
Three-cylinder capacitor A capacitor consists of three concentric cylindrical shells with radii R, 2R, and 3R....
Three-cylinder capacitor A capacitor consists of three concentric cylindrical shells with radii R, 2R, and 3R. The inner and outer shells are connected by a conducting wire, so they are at the same potential. The shells are initially neutral, and then some charge is transferred from the middle shell to the inner/outer shells. a) If the final charge per unit length on the middle shell is λ, what are the charges per unit length on the inner and outer shells?...
A cylindrical resistor with radius K and length L is made from a material with conductivity...
A cylindrical resistor with radius K and length L is made from a material with conductivity ?. The potential difference between the circular ends is V. What is the current that flows from one end to the other? What is the resistance? Show that the resistance you found is R = ?L/A, where ? is the resistivity of the material, and A is the cross-sectional area of the cylinder. (Hint: The electric field is constant throughout the resistor, but its...
A long cylindrical wire made of a magnetic metal with relative permeability has a uniform current...
A long cylindrical wire made of a magnetic metal with relative permeability has a uniform current density J flowing along its length. An insulated wire runs along the axis of the cylinder and carries a current I. Find the magnetic field, magnetic induction, magnetization, and bound currents in the magnetic material.
Consider a spherical capacitor consisting of two concentric spherical shells of radii R1 and R2 that...
Consider a spherical capacitor consisting of two concentric spherical shells of radii R1 and R2 that carry surface charge densities of σ0 and –σ0, respectively. The capacitor is filled with a linear but inhomogeneous dielectric whose relative permittivity is a function of distance from the center of the sphere εr = εr (r). (a) If energy density inside the capacitor (R1< r < R2) is constant and εr (R2) = 2, find εr (r). (b) Find the polarization P within...
A Geiger tube consists of two elements, a long metal cylindrical shell and a long straight...
A Geiger tube consists of two elements, a long metal cylindrical shell and a long straight metal wire running down its central axis. Model the tube as if both the wire and cylinder are infinitely long. The central wire is positively charged and the outer cylinder is negatively charged. The potential difference between the wire and the cylinder is 1.10 kV. Suppose the cylinder in the Geiger tube has an inside diameter of 3.64 cm and the wire has a...
A 57.40-pF cylindrical capacitor carries a charge of 1.740 µC. The capacitor has a length of...
A 57.40-pF cylindrical capacitor carries a charge of 1.740 µC. The capacitor has a length of 1.400 ✕ 10−3 m. (a) What is the potential difference across the capacitor? V (b) If the radial separation between the two cylinders is 6.380 ✕ 10−4 m, what are the inner and outer radii of the cylindrical conductors? (Use 8.854 ✕ 10−12 C2/(N · m2) for the permittivity of free space. Give your answers to at least four decimal places.) rin = m...
1). Consider a transmission line made of a conductor with length l, the lines are made...
1). Consider a transmission line made of a conductor with length l, the lines are made of conductor with resistance per unit length R, inductance per unit length L, between the two lines is dielectric material with conductance per unit length Gand capacitance per unit length C. (a) Derive transmission line equations (telegrapher’s equations) for the phasors of the voltage difference and current in the transmission line. Explain the meaning of the spatial coordinate clearly. (b) Write down the general...
Consider a long straight hollow cylindrical metal tube with an inner diameter of R. The possible...
Consider a long straight hollow cylindrical metal tube with an inner diameter of R. The possible TE modes and TM modes for electromagnetic waves to propagate in this wave guide system
Two long, charged, thin-walled, concentric cylindrical shells have radii of 3.9 and 9.4 cm. The charge...
Two long, charged, thin-walled, concentric cylindrical shells have radii of 3.9 and 9.4 cm. The charge per unit length is 6.8 × 10-6 C/m on the inner shell and -8.5 × 10-6 C/m on the outer shell. What are the (a) magnitude E and (b) direction (radially inward or outward) of the electric field at radial distance r = 5.9 cm? What are (c) E and (d) the direction at r = 14 cm?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT