In: Statistics and Probability
1) You wish to test the following claim (H1) at a significance
level of α=0.05
      Ho:p1=p2
      H1:p1<p2
You obtain 23 successes in a sample of size n1=268 from the first
population. You obtain 79 successes in a sample of size n2=465 from
the second population. For this test, you should NOT use the
continuity correction, and you should use the normal distribution
as an approximation for the binomial distribution.
What is the critical value for this test? (Report answer accurate
to three decimal places.)
critical value =
What is the test statistic for this sample? (Report answer accurate
to three decimal places.)
test statistic =
2) You wish to test the following claim (H1H1) at a significance
level of α=0.005α=0.005.
      Ho:μ=70.9
      H1:μ≠70.9
You believe the population is normally distributed, but you do not
know the standard deviation. You obtain the following sample of
data:
| data | 
|---|
| 71.8 | 
| 55.5 | 
| 105 | 
| 28 | 
| 46.2 | 
| 37.1 | 
| 58 | 
| 51.4 | 
| 52.4 | 
| 53.5 | 
What is the critical value for this test? (Report answer accurate
to three decimal places.)
critical value = ±±
What is the test statistic for this sample? (Report answer accurate
to three decimal places.)
test statistic =
3) You wish to test the following claim (H1H1) at a significance
level of α=0.05α=0.05.
      Ho:p1=p2
      H1:p1<p2
You obtain 23 successes in a sample of size n1=268n1=268 from the
first population. You obtain 79 successes in a sample of size
n2=465n2=465 from the second population. For this test, you should
NOT use the continuity correction, and you should use the normal
distribution as an approximation for the binomial
distribution.
What is the critical value for this test? (Report answer accurate
to three decimal places.)
critical value =
What is the test statistic for this sample? (Report answer accurate
to three decimal places.)
test statistic =
4) You wish to test the following claim (H1H1) at a significance
level of α=0.10α=0.10.
      Ho:μ1=μ2
      H1:μ1<μ2
You believe both populations are normally distributed, but you do
not know the standard deviations for either. However, you also have
no reason to believe the variances of the two populations are not
equal. You obtain the following two samples of data.
| Sample #1 | Sample #2 | 
  | 
  | 
|---|
What is the test statistic for this sample? (Report answer accurate
to three decimal places.)
test statistic =
What is the p-value for this sample? (Report answer accurate to
four decimal places.)
p-value =
1) z-critical value , Z* =   
    -1.645 [Excel function
=NORMSINV(α)  
------------
sample #1   ----->      
       
first sample size,     n1=  
268          
number of successes, sample 1 =     x1=  
23          
proportion success of sample 1 , p̂1=  
x1/n1=   0.0858      
   
          
       
sample #2   ----->      
       
second sample size,     n2 =   
465          
number of successes, sample 2 =     x2 =
   79      
   
proportion success of sample 1 , p̂ 2=   x2/n2 =
   0.1699      
   
          
       
difference in sample proportions, p̂1 - p̂2 =    
0.0858   -   0.1699   =  
-0.0841
          
       
pooled proportion , p =   (x1+x2)/(n1+n2)=  
0.1392          
          
       
std error ,SE =    =SQRT(p*(1-p)*(1/n1+
1/n2)=   0.02654      
   
Z-statistic = (p̂1 - p̂2)/SE = (   -0.084  
/   0.0265   ) =   -3.167
===================
2)
critical t value, t* =    ±   3.690
-----------
sample std dev ,    s = √(Σ(X- x̅ )²/(n-1) )
=   20.9029      
           
Sample Size ,   n =    10  
           
   
Sample Mean,    x̅ = ΣX/n =   
55.8900          
       
          
           
   
degree of freedom=   DF=n-1=   9  
           
   
          
           
   
Standard Error , SE = s/√n =   20.9029   / √
   10   =   6.6101  
   
t-test statistic= (x̅ - µ )/SE = (  
55.890   -   70.9   ) /   
6.6101   =   -2.271
==================
3)
z-critical value , Z* =        -1.645
[Excel function =NORMSINV(α)  
---------------
sample #1   ----->      
       
first sample size,     n1=  
268          
number of successes, sample 1 =     x1=  
23          
proportion success of sample 1 , p̂1=  
x1/n1=   0.0858      
   
          
       
sample #2   ----->      
       
second sample size,     n2 =   
465          
number of successes, sample 2 =     x2 =
   79      
   
proportion success of sample 1 , p̂ 2=   x2/n2 =
   0.1699      
   
          
       
difference in sample proportions, p̂1 - p̂2 =    
0.0858   -   0.1699   =  
-0.0841
          
       
pooled proportion , p =   (x1+x2)/(n1+n2)=  
0.1392          
          
       
std error ,SE =    =SQRT(p*(1-p)*(1/n1+
1/n2)=   0.02654      
   
Z-statistic = (p̂1 - p̂2)/SE = (  
-0.084   /   0.0265   ) =  
-3.167