In: Economics
Wisconsin
| Quantity | Price | Income | 
| 309 | 29.77 | 25.59 | 
| 341 | 26.49 | 28.16 | 
| 600 | 28.56 | 54.66 | 
| 298 | 32.38 | 26.15 | 
| 241 | 26.15 | 17.63 | 
| 202 | 30.37 | 14.63 | 
| 654 | 27.29 | 60.42 | 
| 459 | 29.44 | 40.15 | 
| 490 | 32.83 | 44.4 | 
| 399 | 36.68 | 36.91 | 
| 351 | 27.39 | 29.81 | 
| 157 | 29.46 | 10.93 | 
| 457 | 28.49 | 40.72 | 
| 322 | 29.16 | 27.29 | 
| 306 | 29.91 | 25.48 | 
| 536 | 32.3 | 48.43 | 
| 416 | 26.44 | 36.27 | 
| 411 | 32.12 | 35.94 | 
| 628 | 29.84 | 57.61 | 
| 393 | 32.37 | 33.75 | 
| 446 | 28.59 | 39.46 | 
| 288 | 32.14 | 24.19 | 
| 432 | 32.22 | 38.45 | 
| 350 | 31.52 | 29.52 | 
| 423 | 31.81 | 38.05 | 
| 316 | 33.36 | 27.18 | 
| 275 | 33.44 | 24.07 | 
| 342 | 28.14 | 29 | 
| 454 | 26.04 | 40.16 | 
| 239 | 30.37 | 19.74 | 
| 368 | 32.19 | 32.02 | 
| 407 | 30.84 | 35.43 | 
| 252 | 31.56 | 20.19 | 
| 151 | 33.11 | 10.8 | 
| 314 | 31.42 | 26.46 | 
| 451 | 34.14 | 40.69 | 
| 395 | 30.52 | 34.81 | 
| 229 | 25.32 | 17.36 | 
| 340 | 28.66 | 28.36 | 
| 415 | 32.2 | 37.04 | 
| 476 | 32.52 | 43.47 | 
| 285 | 26.36 | 22.97 | 
| 345 | 30.79 | 29.52 | 
| 420 | 35.14 | 38.4 | 
| 394 | 34.1 | 35.73 | 
| 443 | 28.5 | 38.81 | 
| 393 | 25.72 | 33.23 | 
| 269 | 30.64 | 22.66 | 
| 565 | 31.27 | 51.13 | 
| 515 | 26.23 | 46.6 | 
1. In order to find the own elasticity and income elasticity first we need to convert the data to log form as below using function = log() in excel
| 
 Quantity  | 
 Price  | 
 Income  | 
| 
 2.49  | 
 1.47  | 
 1.41  | 
| 
 2.53  | 
 1.42  | 
 1.45  | 
| 
 2.78  | 
 1.46  | 
 1.74  | 
| 
 2.47  | 
 1.51  | 
 1.42  | 
| 
 2.38  | 
 1.42  | 
 1.25  | 
| 
 2.31  | 
 1.48  | 
 1.17  | 
| 
 2.82  | 
 1.44  | 
 1.78  | 
| 
 2.66  | 
 1.47  | 
 1.60  | 
| 
 2.69  | 
 1.52  | 
 1.65  | 
| 
 2.60  | 
 1.56  | 
 1.57  | 
| 
 2.55  | 
 1.44  | 
 1.47  | 
| 
 2.20  | 
 1.47  | 
 1.04  | 
| 
 2.66  | 
 1.45  | 
 1.61  | 
| 
 2.51  | 
 1.46  | 
 1.44  | 
| 
 2.49  | 
 1.48  | 
 1.41  | 
| 
 2.73  | 
 1.51  | 
 1.69  | 
| 
 2.62  | 
 1.42  | 
 1.56  | 
| 
 2.61  | 
 1.51  | 
 1.56  | 
| 
 2.80  | 
 1.47  | 
 1.76  | 
| 
 2.59  | 
 1.51  | 
 1.53  | 
| 
 2.65  | 
 1.46  | 
 1.60  | 
| 
 2.46  | 
 1.51  | 
 1.38  | 
| 
 2.64  | 
 1.51  | 
 1.58  | 
| 
 2.54  | 
 1.50  | 
 1.47  | 
| 
 2.63  | 
 1.50  | 
 1.58  | 
| 
 2.50  | 
 1.52  | 
 1.43  | 
| 
 2.44  | 
 1.52  | 
 1.38  | 
| 
 2.53  | 
 1.45  | 
 1.46  | 
| 
 2.66  | 
 1.42  | 
 1.60  | 
| 
 2.38  | 
 1.48  | 
 1.30  | 
| 
 2.57  | 
 1.51  | 
 1.51  | 
| 
 2.61  | 
 1.49  | 
 1.55  | 
| 
 2.40  | 
 1.50  | 
 1.31  | 
| 
 2.18  | 
 1.52  | 
 1.03  | 
| 
 2.50  | 
 1.50  | 
 1.42  | 
| 
 2.65  | 
 1.53  | 
 1.61  | 
| 
 2.60  | 
 1.48  | 
 1.54  | 
| 
 2.36  | 
 1.40  | 
 1.24  | 
| 
 2.53  | 
 1.46  | 
 1.45  | 
| 
 2.62  | 
 1.51  | 
 1.57  | 
| 
 2.68  | 
 1.51  | 
 1.64  | 
| 
 2.45  | 
 1.42  | 
 1.36  | 
| 
 2.54  | 
 1.49  | 
 1.47  | 
| 
 2.62  | 
 1.55  | 
 1.58  | 
| 
 2.60  | 
 1.53  | 
 1.55  | 
| 
 2.65  | 
 1.45  | 
 1.59  | 
| 
 2.59  | 
 1.41  | 
 1.52  | 
| 
 2.43  | 
 1.49  | 
 1.36  | 
| 
 2.75  | 
 1.50  | 
 1.71  | 
| 
 2.71  | 
 1.42  | 
 1.67  | 
2. Using data analysis run regression, keeping Y as Q, and Price, Income as X
3. The results is expressed as below
| 
 SUMMARY OUTPUT  | 
||||||
| 
 Regression Statistics  | 
||||||
| 
 Multiple R  | 
 0.9981  | 
|||||
| 
 R Square  | 
 0.9961  | 
|||||
| 
 Adjusted R Square  | 
 0.9960  | 
|||||
| 
 Standard Error  | 
 0.0088  | 
|||||
| 
 Observations  | 
 50.0000  | 
|||||
| 
 ANOVA  | 
||||||
| 
 df  | 
 SS  | 
 MS  | 
 F  | 
 Significance F  | 
||
| 
 Regression  | 
 2.0000  | 
 0.9287  | 
 0.4644  | 
 6049.3363  | 
 0.0000  | 
|
| 
 Residual  | 
 47.0000  | 
 0.0036  | 
 0.0001  | 
|||
| 
 Total  | 
 49.0000  | 
 0.9324  | 
||||
| 
 Coefficients  | 
 Standard Error  | 
 t Stat  | 
 P-value  | 
 Lower 95%  | 
 Upper 95%  | 
|
| 
 Intercept  | 
 1.5665  | 
 0.0486  | 
 32.2614  | 
 0.0000  | 
 1.4688  | 
 1.6641  | 
| 
 Price  | 
 -0.1742  | 
 0.0322  | 
 -5.4054  | 
 0.0000  | 
 -0.2391  | 
 -0.1094  | 
| 
 Income  | 
 0.8385  | 
 0.0076  | 
 109.9932  | 
 0.0000  | 
 0.8232  | 
 0.8539  | 
4. The expression is log(Q) = 1.57-0.1742*log(P)+0.84*log(Income)
Where Own price elasticity = -0.1742, means for one percent increase in price the quantity decreases by -0.1742 percent
Income elasticity = 0.84, means for one percent increase in price the quantity increases by 0.84 percent