In: Economics
Wisconsin
| Quantity | Price | Income |
| 309 | 29.77 | 25.59 |
| 341 | 26.49 | 28.16 |
| 600 | 28.56 | 54.66 |
| 298 | 32.38 | 26.15 |
| 241 | 26.15 | 17.63 |
| 202 | 30.37 | 14.63 |
| 654 | 27.29 | 60.42 |
| 459 | 29.44 | 40.15 |
| 490 | 32.83 | 44.4 |
| 399 | 36.68 | 36.91 |
| 351 | 27.39 | 29.81 |
| 157 | 29.46 | 10.93 |
| 457 | 28.49 | 40.72 |
| 322 | 29.16 | 27.29 |
| 306 | 29.91 | 25.48 |
| 536 | 32.3 | 48.43 |
| 416 | 26.44 | 36.27 |
| 411 | 32.12 | 35.94 |
| 628 | 29.84 | 57.61 |
| 393 | 32.37 | 33.75 |
| 446 | 28.59 | 39.46 |
| 288 | 32.14 | 24.19 |
| 432 | 32.22 | 38.45 |
| 350 | 31.52 | 29.52 |
| 423 | 31.81 | 38.05 |
| 316 | 33.36 | 27.18 |
| 275 | 33.44 | 24.07 |
| 342 | 28.14 | 29 |
| 454 | 26.04 | 40.16 |
| 239 | 30.37 | 19.74 |
| 368 | 32.19 | 32.02 |
| 407 | 30.84 | 35.43 |
| 252 | 31.56 | 20.19 |
| 151 | 33.11 | 10.8 |
| 314 | 31.42 | 26.46 |
| 451 | 34.14 | 40.69 |
| 395 | 30.52 | 34.81 |
| 229 | 25.32 | 17.36 |
| 340 | 28.66 | 28.36 |
| 415 | 32.2 | 37.04 |
| 476 | 32.52 | 43.47 |
| 285 | 26.36 | 22.97 |
| 345 | 30.79 | 29.52 |
| 420 | 35.14 | 38.4 |
| 394 | 34.1 | 35.73 |
| 443 | 28.5 | 38.81 |
| 393 | 25.72 | 33.23 |
| 269 | 30.64 | 22.66 |
| 565 | 31.27 | 51.13 |
| 515 | 26.23 | 46.6 |
1. In order to find the own elasticity and income elasticity first we need to convert the data to log form as below using function = log() in excel
|
Quantity |
Price |
Income |
|
2.49 |
1.47 |
1.41 |
|
2.53 |
1.42 |
1.45 |
|
2.78 |
1.46 |
1.74 |
|
2.47 |
1.51 |
1.42 |
|
2.38 |
1.42 |
1.25 |
|
2.31 |
1.48 |
1.17 |
|
2.82 |
1.44 |
1.78 |
|
2.66 |
1.47 |
1.60 |
|
2.69 |
1.52 |
1.65 |
|
2.60 |
1.56 |
1.57 |
|
2.55 |
1.44 |
1.47 |
|
2.20 |
1.47 |
1.04 |
|
2.66 |
1.45 |
1.61 |
|
2.51 |
1.46 |
1.44 |
|
2.49 |
1.48 |
1.41 |
|
2.73 |
1.51 |
1.69 |
|
2.62 |
1.42 |
1.56 |
|
2.61 |
1.51 |
1.56 |
|
2.80 |
1.47 |
1.76 |
|
2.59 |
1.51 |
1.53 |
|
2.65 |
1.46 |
1.60 |
|
2.46 |
1.51 |
1.38 |
|
2.64 |
1.51 |
1.58 |
|
2.54 |
1.50 |
1.47 |
|
2.63 |
1.50 |
1.58 |
|
2.50 |
1.52 |
1.43 |
|
2.44 |
1.52 |
1.38 |
|
2.53 |
1.45 |
1.46 |
|
2.66 |
1.42 |
1.60 |
|
2.38 |
1.48 |
1.30 |
|
2.57 |
1.51 |
1.51 |
|
2.61 |
1.49 |
1.55 |
|
2.40 |
1.50 |
1.31 |
|
2.18 |
1.52 |
1.03 |
|
2.50 |
1.50 |
1.42 |
|
2.65 |
1.53 |
1.61 |
|
2.60 |
1.48 |
1.54 |
|
2.36 |
1.40 |
1.24 |
|
2.53 |
1.46 |
1.45 |
|
2.62 |
1.51 |
1.57 |
|
2.68 |
1.51 |
1.64 |
|
2.45 |
1.42 |
1.36 |
|
2.54 |
1.49 |
1.47 |
|
2.62 |
1.55 |
1.58 |
|
2.60 |
1.53 |
1.55 |
|
2.65 |
1.45 |
1.59 |
|
2.59 |
1.41 |
1.52 |
|
2.43 |
1.49 |
1.36 |
|
2.75 |
1.50 |
1.71 |
|
2.71 |
1.42 |
1.67 |
2. Using data analysis run regression, keeping Y as Q, and Price, Income as X
3. The results is expressed as below
|
SUMMARY OUTPUT |
||||||
|
Regression Statistics |
||||||
|
Multiple R |
0.9981 |
|||||
|
R Square |
0.9961 |
|||||
|
Adjusted R Square |
0.9960 |
|||||
|
Standard Error |
0.0088 |
|||||
|
Observations |
50.0000 |
|||||
|
ANOVA |
||||||
|
df |
SS |
MS |
F |
Significance F |
||
|
Regression |
2.0000 |
0.9287 |
0.4644 |
6049.3363 |
0.0000 |
|
|
Residual |
47.0000 |
0.0036 |
0.0001 |
|||
|
Total |
49.0000 |
0.9324 |
||||
|
Coefficients |
Standard Error |
t Stat |
P-value |
Lower 95% |
Upper 95% |
|
|
Intercept |
1.5665 |
0.0486 |
32.2614 |
0.0000 |
1.4688 |
1.6641 |
|
Price |
-0.1742 |
0.0322 |
-5.4054 |
0.0000 |
-0.2391 |
-0.1094 |
|
Income |
0.8385 |
0.0076 |
109.9932 |
0.0000 |
0.8232 |
0.8539 |
4. The expression is log(Q) = 1.57-0.1742*log(P)+0.84*log(Income)
Where Own price elasticity = -0.1742, means for one percent increase in price the quantity decreases by -0.1742 percent
Income elasticity = 0.84, means for one percent increase in price the quantity increases by 0.84 percent