In: Finance
You are valuing an investment that will pay you $23,000 per year for the first 8 years, $27,000 per year for the next 12 years, and $53,000 per year the following 12 years (all payments are at the end of each year). If the appropriate annual discount rate is 10.00%, what is the value of the investment to you today?
As per discounted cash flows, value of investment today is present value of cash flows in future.
Step-1:Calculation of present value of cash flow of first 8 years | |||||||||||||
Present value | = | Annual Cash flows * Present value of annuity of 1 | |||||||||||
= | $ 23,000.00 | * | 5.334926 | ||||||||||
= | $ 1,22,703.30 | ||||||||||||
Working: | |||||||||||||
Present value of annuity of 1 | = | (1-(1+i)^-n)/i | Where, | ||||||||||
= | (1-(1+0.10)^-8)/0.10 | i | 10.00% | ||||||||||
= | 5.334926198 | n | 8 | ||||||||||
Step-2:Calculation of present value of cash flows of next 12 years | |||||||||||||
Present Value | = | (Annual cash flows * Present value of annuity of 1 for 12 years)*Present value of 1 to be recived in 8 years | |||||||||||
= | ( | 27000 | * | 6.81369182 | ) | * | 0.466507 | ||||||
= | $ 85,823.21 | ||||||||||||
Working: | |||||||||||||
Present value of annuity of 1 | = | (1-(1+i)^-n)/i | Where, | ||||||||||
= | (1-(1+0.10)^-12)/0.10 | i | 10.00% | ||||||||||
= | 6.813691823 | n | 12 | ||||||||||
Present value of 1 to be received in 8 years | = | (1+i)^-n | Where, | ||||||||||
= | (1+0.10)^-8 | i | 10.00% | ||||||||||
= | 0.466507 | n | 8 | ||||||||||
Step-3:Calculation of present value of cash flows of next 12 years | |||||||||||||
Present Value | = | (Annual cash flows * Present value of annuity of 1 for 12 years)*Present value of 1 to be recived in 20 years | |||||||||||
= | ( | 53000 | * | 6.81369182 | ) | * | 0.148644 | ||||||
= | $ 53,679.03 | ||||||||||||
Working: | |||||||||||||
Present value of annuity of 1 | = | (1-(1+i)^-n)/i | Where, | ||||||||||
= | (1-(1+0.10)^-12)/0.10 | i | 10.00% | ||||||||||
= | 6.813691823 | n | 12 | ||||||||||
Present value of 1 to be received in 8 years | = | (1+i)^-n | Where, | ||||||||||
= | (1+0.10)^-20 | i | 10.00% | ||||||||||
= | 0.148644 | n | 20 | ||||||||||
Step-4:Calculation of present value of total cash flows | |||||||||||||
Present value of all cash flows | = | $ 1,22,703.30 | + | $ 85,823.21 | + | $ 53,679.03 | |||||||
= | $ 2,62,205.54 | ||||||||||||
Thus, | |||||||||||||
Value of investment today is | $ 2,62,205.54 | ||||||||||||