In: Statistics and Probability
A random sample of fifty si 200-meter swims has a mean time of 3.06 minutes and the population standard deviation is 0.08 minutes. Construct a 95% confidence interval for the population mean time. Interpret the results.In a random sample of 50 refrigerators, the mean repair cost was $136.00 and the population standard deviation is$19.1019.10. A 90% confidence interval for the population mean repair cost is (131.56,140.44). Change the sample size to n=100. Construct a 90% confidence interval for the population mean repair cost. Which confidence interval is wider? Explain.
Construct a 90% confidence interval for the population mean repair cost.
The 95% confidence interval isA random sample of thirty-seven 200-meter swims has a mean time of 3.591 minutes. The population standard deviation is 0.080 minutes. A 90% confidence interval for the population mean time is (3.569,3.613). Construct a 90% confidence interval for the population mean time using a population standard deviation of 0.03 minutes. Which confidence interval is wider? Explain.
The 90% confidence interval is
The 95% confidence interval is
You are given the sample mean and the population standard deviation. Use this information to construct the 90% and 95% confidence intervals for the population mean. Interpret the results and compare the widths of the confidence intervals. If convenient, use technology to construct the confidence intervals.
A random sample of 35 home theater systems has a mean price of $128.00. Assume the population standard deviation is $15.90. Find the 90% and 95% of confidence interval.
Level of Significance ,    α =   
0.05          
z value=   z α/2=   1.9600   [Excel
formula =NORMSINV(α/2) ]      
          
       
Standard Error , SE = σ/√n =   0.0800   /
√   50   =   0.011314
margin of error, E=Z*SE =   1.9600  
*   0.01131   =   0.022174
          
       
confidence interval is       
           
Interval Lower Limit = x̅ - E =    3.06  
-   0.022174   =   3.037826
Interval Upper Limit = x̅ + E =    3.06  
-   0.022174   =   3.082174
95%   confidence interval is (  
3.04   < µ <   3.08   )
-------------------------
REFRIGERATOR 100 SAMPLE SIZE 90% CONFIDENCE
Level of Significance ,    α =   
0.1          
'   '   '      
   
z value=   z α/2=   1.6449   [Excel
formula =NORMSINV(α/2) ]      
          
       
Standard Error , SE = σ/√n =   19.1000   /
√   100   =   1.910000
margin of error, E=Z*SE =   1.6449  
*   1.91000   =   3.141670
          
       
confidence interval is       
           
Interval Lower Limit = x̅ - E =    136.00  
-   3.141670   =   132.858330
Interval Upper Limit = x̅ + E =    136.00  
-   3.141670   =   139.141670
90%   confidence interval is (  
132.86   < µ <   139.14  
)
Sample size 50 is more wider
---------------------------
Level of Significance ,    α =   
0.1          
'   '   '      
   
z value=   z α/2=   1.6449   [Excel
formula =NORMSINV(α/2) ]      
          
       
Standard Error , SE = σ/√n =   0.0300   /
√   37   =   0.004932
margin of error, E=Z*SE =   1.6449  
*   0.00493   =   0.008112
          
       
confidence interval is       
           
Interval Lower Limit = x̅ - E =    3.59  
-   0.008112   =   3.582888
Interval Upper Limit = x̅ + E =    3.59  
-   0.008112   =   3.599112
90%   confidence interval is (   3.582
< µ <   3.599 )
Standard deviation 0.08 is more wider
THANKS
revert back for doubt
please upvote