In: Statistics and Probability
Rates of return on 24 mutual funds are shown.
Fund | 12-Mo. | 5-Year | ||||
1 | 7.9 | 4.0 | ||||
2 | 2.9 | 3.4 | ||||
3 | 14.2 | 7.9 | ||||
4 | 5.5 | 9.8 | ||||
5 | 5.1 | 6.9 | ||||
6 | 10.2 | 12.1 | ||||
7 | 3.7 | 7.8 | ||||
8 | 7.8 | 11.4 | ||||
9 | 10.4 | 15.1 | ||||
10 | 12.6 | 5.5 | ||||
11 | 10.0 | 9.4 | ||||
12 | 13.4 | 2.7 | ||||
13 | -0.7 | 12.2 | ||||
14 | 5.3 | 4.8 | ||||
15 | 21.1 | 13.2 | ||||
16 | 11.7 | 4.7 | ||||
17 | -1.8 | 6.4 | ||||
18 | -2.7 | -2.7 | ||||
19 | 13.7 | 8.3 | ||||
20 | 11.2 | 8.5 | ||||
21 | 8.9 | 5.0 | ||||
22 | 0.9 | 6.2 | ||||
23 | 1.2 | 12.5 | ||||
24 | 11.3 | 10.4 | ||||
(a) Fill in the right side of the worksheet below.
(Rank values lowest to highest by giving the lowest value a
rank =1.)
Fund | Rank 12-Mo. | Rank 5-Year | ||
1 | ||||
2 | ||||
3 | ||||
4 | ||||
5 | ||||
6 | ||||
7 | ||||
8 | ||||
9 | ||||
10 | ||||
11 | ||||
12 | ||||
13 | ||||
14 | ||||
15 | ||||
16 | ||||
17 | ||||
18 | ||||
19 | ||||
20 | ||||
21 | ||||
22 | ||||
23 | ||||
24 | ||||
Total | ||||
(b) Calculate Spearman's rank correlation
coefficient. (Round your answer to 3 decimal places. Use
the book's formula to determine the coefficient. If you use
MegaStat to check answers, you must use version 10.2 Release 2.1 or
higher. Ensure the box marked “correct for ties” is NOT checked.
Connect's answers follow the textbook method, which does not
correct for ties.)
Rank correlation coefficient
(c) Can the assumption of zero correlation be
rejected?
No
Yes
(d) Calculate the Pearson correlation coefficient.
(Round your answer to 4 decimal places.)
Pearson correlation coefficient
(e) Could either test be used for this data?
Yes, the data are ratio data.
No, the data are nominal data.
(a)
Fund 1 |
Rank 12-Mo 12.00 |
Rank 5-Year 4.00 |
(d)
spearsman rank correlation coefficient:
rs=
di= difference between ranks.
Rank 12-Mo | Rank 5-Year | di | di^2 |
12 | 4 | 8 | 64 |
6 | 3 | 3 | 9 |
23 | 13 | 10 | 100 |
10 | 17 | -7 | 49 |
8 | 11 | -3 | 9 |
15 | 20 | -5 | 25 |
7 | 12 | -5 | 25 |
11 | 19 | -8 | 64 |
16 | 24 | -8 | 64 |
20 | 8 | 12 | 144 |
14 | 16 | -2 | 4 |
21 | 2 | 19 | 361 |
3 | 21 | -18 | 324 |
9 | 6 | 3 | 9 |
24 | 23 | 1 | 1 |
19 | 5 | 14 | 196 |
2 | 10 | -8 | 64 |
1 | 1 | 0 | 0 |
22 | 14 | 8 | 64 |
17 | 15 | 2 | 4 |
13 | 7 | 6 | 36 |
4 | 9 | -5 | 25 |
5 | 22 | -17 | 289 |
18 | 18 | 0 | 0 |
=1930
rs==0.1608 (calculated)
(b)rs at 0.05 for 24 samples =0.388 (tabulated)
since rs cal<rs tab
hence, no rejection.
(c)Pearson correlation coefficient=
X Values 7.9 |
Y Values 4 |
X - 0.242 |
Y - -3.729 |
(X - )2 0.058 |
(Y - )2 13.907 |
(X - )(Y - ) -0.901 |
Key X: X Values Y: Y Values : Mean of X Values : Mean of Y Values X - & Y - : Deviation scores (X - )2 & (Y - )2: Deviation Squared (X - )(Y - ): Product of Deviation Scores |
Result Details & Calculation X Values ∑ = 183.8 Mean = 7.658 ∑(X - )2 = SSx = 789.658 Y Values ∑ = 185.5 Mean = 7.729 ∑(Y - )2 = SSy = 376.43 X and Y Combined N = 24 ∑(X - )(Y - ) = 157.519 R Calculation r = ∑((X - )(Y - )) / √((SSx)(SSy)) r = 157.519 / √((789.658)(376.43)) = 0.2889 r = 0.2889(pearsons correlation coefficient.) |
(e) Yes, the data are ratio data.
please rate my answer and comment for doubts.