Question

In: Finance

Problem 3: Derivatives Valuation (6 marks) A stock price is currently $36. During each three-month period...

Problem 3: Derivatives Valuation

A stock price is currently $36. During each three-month period for the next six months it is expected to increase by 9% or decrease by 8%. The risk-free interest rate is 5%. Use a two-step tree to calculate the value of a derivative that pays off (max[(40-ST),0])2 where St is the stock price in six months.

  1. What are the payoffs at the final nodes of the tree? [1 mark]
  2. Use no-arbitrage arguments (you need to show how to set up the riskless portfolios at the different nodes of the binomial tree). [2 mark]
  3. Use risk-neutral valuation. [1 mark]
  4. Verify whether both approaches lead to the same result. [1 mark]
  5. If the derivative is of American style (ST in the payoff function refers to the stock price when the option is exercised), should it be exercised early? [1 mark]

Solutions

Expert Solution

As we are instructed to answer the first question only in case of multiple questions if not specified so I am going to provide the soolution for question (c)

To value the opton using the risk-neutral approach, we need to first calculate the risk neutral probabilities by the formula

Where, "Rf" is the risk free rate

"d" is the down move factor :

"u" is the up move factor:

So we already have Rf, but for u and d we are provided in the question with the information that stock can either move up by 9% or move down 8% in each 3 month. So lets calculate u and d

For time step 1 the share can move up by 9% so you would be would be :

and now lets calculate d ,as it can move down 8% :

NOTE : I will be denoting all the risk neutral probability for up move as P1 and for down move as P2

So lets calculate P1:

With the help of P1 now we can calculate P2 as well. Hence P2:

I am making the binomial tree to help you get it more intutively and to understand the valuation better rather than just bombing the formulas.

NOTE: I will be using some notations in the Binomial tree and those are

So = Share rice today, which is $36

X = Strike price, which is 40

Po = value of the put option

Su= share price if it moves up at time step 1

Sd= share price if moves down at time step 1

Suu= Share price if it moves up at both time step 1 and 2

Sud= if share price moves up at time step 1 and the moves down at time step 2

Sdd = if share price moves down at time step 1 and 2.

Suu = 42.7716

Payoff = 0

Su=39.24

So= $36 Sud = 36.10

Po = 2.9513 = 40 - 36.10

= 3.90

Sd= 33.12

Sdd = 30.47

Payoff = 40 - 30.47

= 9.53

The formula used here is

NOTE : Puu, Pud and Pdd are same as the above notations for share price, except here they are used to denote the payoff from the put option.

So, the value of the put option is 2.9513


Related Solutions

Problem 3: Derivatives Valuation (6 marks) A stock price is currently $36. During each three-month period...
Problem 3: Derivatives Valuation A stock price is currently $36. During each three-month period for the next six months it is expected to increase by 9% or decrease by 8%. The risk-free interest rate is 5%. Use a two-step tree to calculate the value of a derivative that pays off (max[(40-ST),0])2 where ST is the stock price in six months. a. What are the payoffs at the final nodes of the tree? b. Use no-arbitrage arguments (you need to show...
Problem 3: Derivatives Valuation (6 marks) A stock price is currently $36. During each three-month period...
Problem 3: Derivatives Valuation A stock price is currently $36. During each three-month period for the next six months it is expected to increase by 9% or decrease by 8%. The risk-free interest rate is 5%. Use a two-step tree to calculate the value of a derivative that pays off (max[(40-ST),0])2 where ST is the stock price in six months. a. What are the payoffs at the final nodes of the tree? - not PV's for prices on tree b....
A stock price is currently $36. During each three-month period for the next six months it is expected to increase by 9% or decrease by 8%.
Problem 3: Derivatives ValuationA stock price is currently $36. During each three-month period for the next six months it is expected to increase by 9% or decrease by 8%. The risk-free interest rate is 5%. Use a two-step tree to calculate the value of a derivative that pays off (max[(40-ST),0])2 where ST is the stock price in six months.Use risk-neutral valuation.Verify whether both approaches lead to the same result.If the derivative is of American style (ST in the payoff function...
The current price of a stock is $41. During each 6-month period, the price will either...
The current price of a stock is $41. During each 6-month period, the price will either rise by 29% or fall by 22.5%. The annual interest rate is 8.16%. Calculate the value of a one-year American PUT option on the stock with an exercise price of $40.
A stock price is currently $30. During each two-month period for the next four months it...
A stock price is currently $30. During each two-month period for the next four months it will increase by 8% or decrease by 10%. The risk-free interest rate is 4%. Use a two-step tree to calculate the value of a derivative that pays off [max(30-ST, 0)]2, where ST is the stock price in four months. If the derivative is American-style, should it be exercised early?
A stock price is currently $100. Over each of the next two 6-month periods it is...
A stock price is currently $100. Over each of the next two 6-month periods it is expected to go up by 10% or down by 10%. The risk-free interest rate is 8% per annum with continuous compounding, what is the value of a 1-year European put option with a strike price of $100?
The current price of the stock of Bufflehead company is C$100. During each six-month period it...
The current price of the stock of Bufflehead company is C$100. During each six-month period it will either rise by 10% or fall by 10%. The interest rate is 6% per annum compounded semi-annually. a. Calculate the value of a one-year European put option on Bufflehead's stock with an exercise price of C$115. b. Recalculate the value of the Bufflehead put option, assuming that it is an American option.
A stock price is currently $100. Over each of the next two three-month periods it is...
A stock price is currently $100. Over each of the next two three-month periods it is expected to go up by 8% or down by 7%. The risk-free interest rate is 5% per annum with continuous compounding. What is the value of a six-month European call option with a strike price of $95?
A stock price is currently $50. Over each of the next two three-month periods, it is...
A stock price is currently $50. Over each of the next two three-month periods, it is expected to increase by 10% or fall by 10%. Consider a six month American put option with a strike price of $49.5. The risk free rate is 6%. Work out the the two step binomial option pricing fully and fill in the asked questions. (Work out using 4 decimals and then enter your answers rounding to two decimals without $ sign) a) S0uu= Blank...
A stock price is currently $40. Over each of the next two three-month periods it is...
A stock price is currently $40. Over each of the next two three-month periods it is expected to go up by 10% or down by 10% (meaning, precisely, if the stock price at the start of a period is $40, it will go to $40*1.1=$44 or to $40*0.9=$36 at the end of the period and if the stock price at the start of a period is $44, it will go to $44*1.1=$48.44 or to $44*0.9=$39.6 at the end of the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT