Question

In: Physics

Suppose a solution to the time independent Schrodinger equation is multiplied by exp(-iEt/h-bar), thus making it...

Suppose a solution to the time independent Schrodinger equation is multiplied by exp(-iEt/h-bar), thus making it a solution to the time dependent Schrodinger equation. Will the product still be a solution to the time independent equation?

Solutions

Expert Solution


Related Solutions

Solve the time independent schrodinger equation for a particle confined to a mobius strip.
Solve the time independent schrodinger equation for a particle confined to a mobius strip.
Use the Schrodinger equation solution of the H atom corresponding to its wave function for the...
Use the Schrodinger equation solution of the H atom corresponding to its wave function for the 3dxy orbital to explain why this orbital has no radial node. Questions to consider: (j) What is the value of the wave function and thus the radial part of the function at a node? (ii) What factor of the radial part of the wave function, containing r, can equal your value in (i) and thus allow you to obtain a value for r?
1. A particle satisfying the time-independent Schrodinger equation must have a) an eigenfunction that is normalized....
1. A particle satisfying the time-independent Schrodinger equation must have a) an eigenfunction that is normalized. b) a potential energy that is independent of location. c) a de Broglie wavelength that is independent of location d) a total energy that is independent of location. Correct answer is C but I need detailed explanation also explain each point why they are false
(a) The one-dimensional time-independent Schrodinger equation is -(h-bar2/2m)(d2?(x)/dx2) + U(x)?(x) = E?(x) Give the meanings of...
(a) The one-dimensional time-independent Schrodinger equation is -(h-bar2/2m)(d2?(x)/dx2) + U(x)?(x) = E?(x) Give the meanings of the symbols in this equation. (b) A particle of mass m is contained in a one-dimensional box of width a. The potential energy U(x) is infinite at the walls of the box (x = 0 and x = a) and zero in between (0 < x < a). Solve the Schrodinger equation for this particle and hence show that the normalized solutions have the...
Calculation of half-life for alpha emission using time-independent Schrodinger Equation using the following following information: Radionuclide:...
Calculation of half-life for alpha emission using time-independent Schrodinger Equation using the following following information: Radionuclide: 241-Am (Z=95); Ea = 5.49 MeV; Measured Half-Life~432y Follow the steps involved and show your work for each subset question, not the final answer: (a) Evaluate the well radius [=separation distance (r) between the center of the alpha particle as it abuts the recoil nucleus]; (b) Evaluate the coulomb barrier potential energy (U) for the well; (c) Estimate the separation distance (r*) from the...
Find an expression for the Hamiltonian, the Green's Function in Electrodynamics and the time independent Schrodinger...
Find an expression for the Hamiltonian, the Green's Function in Electrodynamics and the time independent Schrodinger Equation. Derive a force equation from each one
Consider a stationary solution of the Schrodinger Equation with positive energy E for a particle with...
Consider a stationary solution of the Schrodinger Equation with positive energy E for a particle with mass m in the following one-dimensional potential: V (x) = 0 for |x| > a and V (x) = −V0 for |x| ≤ a with V0 > 0. (a) Calculate the transmission and reflection probabilities. (b) Show that the transmission probability is unity for some values of the energy.
i) Write the time-independent Scrödinger wave equation for helium (He) and H + 2 atoms. ii)...
i) Write the time-independent Scrödinger wave equation for helium (He) and H + 2 atoms. ii) If interactions between electrons are ignored in these equations, find the energy of the system in terms of electronvolt (eV). iii) Write the spin wave function of a system consisting of two electrons. iv) Specify how the angular momentum of an electron is defined according to classical mechanics, bohr atomic theory, and quantum mechanics, and the values ​​it will take. note: Please show all...
Determine the Time-Dependent Schrodinger Equation (TDSE) from the classical non-relativistic expression for the energy of a...
Determine the Time-Dependent Schrodinger Equation (TDSE) from the classical non-relativistic expression for the energy of a particle and de Broglie’s claim that all particles can be represented as waves. (Important: Describe as much as possible and must use your own words to explain it.)
Show that the solution to the Schrodinger equation for n=1, l=0, m=0 yield the Bohr radius....
Show that the solution to the Schrodinger equation for n=1, l=0, m=0 yield the Bohr radius. Hint: find the most probable value for r.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT