Question

In: Advanced Math

a) Find the approximations T10, M10, and S10 for from pi to 0 , 38sin(x)dx T10...

a) Find the approximations T10, M10, and S10 for

from pi to 0 , 38sin(x)dx

T10 =
M10 =
S10 =

(Round your answers to six decimal places.)


Find the corresponding errors ET, EM, and ES. (Round your answers to six decimal places.)

ET =
EM =
ES =


(b) Compare the actual errors in part (a) with the error estimates given by the Theorem about Error Bounds for Trapezoidal and Midpoint Rules and the Theorem about Error Bound for Simpson's Rule. (Round your answers to six decimal places.)

|ET|
|EM|
|ES|


(c) How large do we have to choose n so that the approximations Tn, Mn, and Sn to the integral in part (a) are accurate to within 0.00001?

n = for Tn
n = for Mn
n = for Sn

Solutions

Expert Solution


Related Solutions

find the eigenvalues of x"+(lambda)(x) = 0, x(0)=x'(pi)=0
1a.) find the eigenvalues of x"+(lambda)(x) = 0, x(0)=x'(pi)=0 1b.) Solve ut=((c)^2)u(xx) , u(0,x)= alpha * sin x, with the boundary condition u(t,0)=u(t,pi)=0 1c.) Solve ut = u(xx), u(0,x) = alpha * sin ((pi*x)/(L)), with the boundary condition u(t,0) = u(t,L) = 0.
Evaluate the integral from (1,pi/2,0) t0 (2,pi,0) of (2xsiny +x) dx +(x^2 cosy + 3sin^3(y)) dy...
Evaluate the integral from (1,pi/2,0) t0 (2,pi,0) of (2xsiny +x) dx +(x^2 cosy + 3sin^3(y)) dy giving the potential function
Solve the nonhomogeneous heat equation: ut-kuxx=sinx, 0<x<pi, t>0 u(0,t)=u(pi,t)=0, t>0 u(x,0)=0, 0<x<pi
Solve the nonhomogeneous heat equation: ut-kuxx=sinx, 0<x<pi, t>0 u(0,t)=u(pi,t)=0, t>0 u(x,0)=0, 0<x<pi
1A) Let S be the upward oriented surface of the box [-pi,pi]x[0,pi]x[0,pi]without the face xy plane....
1A) Let S be the upward oriented surface of the box [-pi,pi]x[0,pi]x[0,pi]without the face xy plane. That is, in the standard view, the box has a front and back, a left and right face, a top face, but no bottom face. Let F(x,y,z)=< ycos(z),zcos(x),xcos(y) >. Find the flux of curl F across S directly,  without using stokes theorem. 1B)  Let S be the upward oriented surface of the box [-pi,pi]x[0,pi]x[0,pi]without the face xy plane. That is, in the standard view, the box...
Consider the following second-order ODE: (d^2 y)/(dx^2 )+2 dy/dx+2y=0 from x = 0 to x =...
Consider the following second-order ODE: (d^2 y)/(dx^2 )+2 dy/dx+2y=0 from x = 0 to x = 1.6 with y(0) = -1 and dy/dx(0) = 0.2. Solve with Euler’s explicit method using h = 0.4. Plot the x-y curve according to your solution.
   \(\int_{0}^{\pi}e^xsinx dx\) with n=6 subdivisions 1) Find the exact value of the integral 2) Approximate...
   \(\int_{0}^{\pi}e^xsinx dx\) with n=6 subdivisions 1) Find the exact value of the integral 2) Approximate the integral using the trapezoidal rule, midpoint rule and simpson rule. 3) Find the errors using each of these rules 4) For each of these rules, show how large n should be, to be within .0001 of the actual answer.
Find the series solution of the following equation x(d^2y/dx^2+(1-x)dy/dx+ny=0. where n=0,1,2
Find the series solution of the following equation x(d^2y/dx^2+(1-x)dy/dx+ny=0. where n=0,1,2
Consider the following first-order ODE dy/dx=x^2/y from x = 0 to x = 2.4 with y(0)...
Consider the following first-order ODE dy/dx=x^2/y from x = 0 to x = 2.4 with y(0) = 2. (a) solving with Euler’s explicit method using h = 0.6 (b) solving with midpoint method using h = 0.6 (c) solving with classical fourth-order Runge-Kutta method using h = 0.6. Plot the x-y curve according to your solution for both (a) and (b).
Consider the equation utt = uxx x ∈ (0, pi) ux(0,t) = u(pi,t) = 0 Write...
Consider the equation utt = uxx x ∈ (0, pi) ux(0,t) = u(pi,t) = 0 Write the series expansion for a solution u(x,t)
Find the solution of the following differential equations (x(x-1))dy-(xy+2x3-x2-2y)dx=0
Find the solution of the following differential equations (x(x-1))dy-(xy+2x3-x2-2y)dx=0
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT