Question

In: Physics

Three point charges, q, 2q, and 3q, are at the vertices of an equilateral triangle of...

Three point charges, q, 2q, and 3q, are at the vertices of an equilateral triangle of sides a. If q= 15.8 nC and a= 11.1 cm, what is the magnitude of the electric field at the geometric center of the triangle?

Please explain in details, in particular the trig to set up the equilateral triangle. I am confused.

Solutions

Expert Solution


Related Solutions

The  three charges are at the three vertices of an equilateral triangle ?( all angles are 60degrees)...
The  three charges are at the three vertices of an equilateral triangle ?( all angles are 60degrees) q 1  =  + 10.0 µC q 2 =  -  5 .0 nC q 3  = + 8 .0 nC Equilateral side of the triangle = 0.05 m. A. Draw forces acting on  q 1 by  q 2and q 3   B. find the components on X and Y axes . C. Use Pythagorean theorem to find the resultant . D. Use tangent to find the direction ( angle ) the resultant...
Three point charges are located at the corners of an equilateral triangle as in the figure...
Three point charges are located at the corners of an equilateral triangle as in the figure below. Find the magnitude and direction of the net electric force on the 1.70 µC charge. (A = 1.70 µC, B = 7.20 µC, and C = -4.30 µC.) Magnitude N Direction degree (Counterclockwise from the + X-axis)
Three point charges are located on the corners of an equilateral triangle 50cm side: The charge...
Three point charges are located on the corners of an equilateral triangle 50cm side: The charge q_1 = + 10µC is at the origin, The charge q_2 = + 9µC in the upper corner of the triangle, at charge q_3 = -6 µC located at the x axis What is the value of the potential energy of the system of the three charges?
Three point charges are located on the corners of an equilateral triangle 50cm side: The charge...
Three point charges are located on the corners of an equilateral triangle 50cm side: The charge q_1 = + 10µC is at the origin, The charge q_2 = + 9µC in the upper corner of the triangle, at charge q_3 = -6 µC located at the x axis. What is the total force (magnitude and direction) exerted on q_1
Consider three point charges at the corners of an equilateral triangle, its base sitting on the...
Consider three point charges at the corners of an equilateral triangle, its base sitting on the x-axis, with charge qA positioned at the origin, qB is at x=+3.50 cm, and qC is at the (top) third corner. qC = +2.60 μC, and the net electric force on qC is 375.0 N in the negative y direction. a. Explain briefly but clearly how you know that qA and qB must have the same magnitude charge and what the sign of that...
Two charges, + q and - q, occupy two corners of an equilateral triangle, as shown...
Two charges, + q and - q, occupy two corners of an equilateral triangle, as shown in FIGURE 19-51. (a) If q = 1.8 mC and r = 0.50 m, find the magnitude and direction of the electric field at point A, the other vertex of the triangle. Let the direction angle be measured counterclockwise from the positive x axis. (b) What is the total electric flux through the surface indicated in the figure? (c) Explain why Gauss’s law cannot...
In two vertexes of an equilateral triangle located charge +q and –2q. Find vector of electric...
In two vertexes of an equilateral triangle located charge +q and –2q. Find vector of electric field in the third vertex if length of the side of the triangle is a. Diagram is a MUST.
3 charges, 8 µC each, are located on three vertices A, B, C of an equilateral triangle with sides 1 cm each.
  9). 3 charges, 8 µC each, are located on three vertices A, B, C of an equilateral triangle with sides 1 cm each. Another charge q is located at the mid point D of the side BC. Calculate q in micro Coulomb so that net force on the charge at A due to the charges at B, C and D is zero. 10). In a right angle triangle ABC, angle ABC is 90 Degree, AB = 2 m, and...
Consider an equilateral triangle, inscribed in a circle of radius a, with a point charge q...
Consider an equilateral triangle, inscribed in a circle of radius a, with a point charge q at each vertex. The electric field is zero at the center, but surprisingly there are three other points inside the triangle where the field is also zero. Where are they? Find the distance from these points to the center of the circle. Please just get the answer to E in terms of a, x, and y. I only need you to solve up to...
Three point charges are placed on the y-axis, a charge q at y=a, a charge -2q...
Three point charges are placed on the y-axis, a charge q at y=a, a charge -2q at the origin and a charge q at y=-a. Such an arrangement is called an electric quadrupole. (a) Find the magnitude and direction of the electric field at points on the positive x-axis. (b)What would be the force exerted by these three charges on a fourth charge 2q placed at (b,0). Explain the steps along the way and thought process behind solving.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT