In: Finance
|
Stock |
Initial investment value |
Expected end-of-period investment value |
Proportion of portfolio initial market value |
Standard Deviation |
|
A |
£400.00 |
£300.00 |
30% |
0.13 |
|
B |
£250.00 |
£350.00 |
40% |
0.3 |
|
C |
£800.00 |
£850.00 |
30% |
0.25 |
| a. Question from Portfolio Management | |||||||
| (i) | |||||||
| Stock | Initial Investment | Expected Value | Increase/(Decrease) in value | Expected return | |||
| A | 400 | 300 | -100 | -25.00% | |||
| B | 250 | 350 | 100 | 40.00% | |||
| C | 800 | 850 | 50 | 6.25% | |||
| (ii) | |||||||
| Expected return of portfolio = Wa*Ra + Wb*Rb + Wc * Rc | |||||||
| = 0.3 * -25% + 0.4 * 40% + 0.3 * 6.25 | |||||||
| = 10.375% | |||||||
| (iii) | |||||||
| S.D of Portfolio (A,B) = underroot of [(Wa)2 (S.D.a)2 + (Wb)2 (S.D.b)2 + 2 (correlation) * (Wa) (S.D.a) * (Wb)(S.D.b) ] | |||||||
| = underroot of [(0.5)2 (0.13)2 + (0.5)2 (0.3)2 + 2 (-0.25) * (0.5) (0.13) * (0.5)(0.3) ] | |||||||
| = 0.1478 or 14.78% |
| a. (i) | Expected price = [(98*0.65)+(112*0.35)]/1.10 = 93.54/- | ||
| And willing to pay 90, so investor is risk averse | |||
| (ii) | Expected return = (93.54-90)/90 = 3.93% | ||
| Risk Premium = 10% - 3.93% = 6.07% | |||
| (iii) | If ready to pay 88, investor is risk averse. | ||
| (iv) | Expected return = (93.54-88)/88 = 6.30% | ||
| Risk Premium = 10% - 6.30% = 3.70% | |||