In: Statistics and Probability
What is value of standard deviation of the 3-year moving average of Germany’s GDP from 1951 to 1982? (Note: You should compare this value with the standard deviation of the original German GDP time series).
a. 4.24 b. 4.33 c. 4.41 d. 4.56 e. 4.69
Unit 7 | Homework | Data | |||||||
Age | Systolic BP | Year | Stories | Height | Year | Germany GDP | |||
47 | 145 | 1990 | 54 | 770 | 1950 | 5.725433 | |||
65 | 162 | 1980 | 47 | 677 | 1951 | 6.256754 | |||
46 | 142 | 1990 | 28 | 428 | 1952 | 6.70308 | |||
67 | 170 | 1989 | 38 | 410 | 1953 | 7.256435 | |||
42 | 124 | 1966 | 29 | 371 | 1954 | 7.72644 | |||
67 | 158 | 1976 | 38 | 504 | 1955 | 8.570349 | |||
56 | 154 | 1974 | 80 | 1136 | 1956 | 9.076571 | |||
64 | 162 | 1991 | 52 | 695 | 1957 | 9.45931 | |||
56 | 150 | 1982 | 45 | 551 | 1958 | 9.665697 | |||
59 | 140 | 1986 | 40 | 550 | 1959 | 10.259906 | |||
34 | 110 | 1931 | 49 | 568 | 1960 | 10.608815 | |||
42 | 128 | 1979 | 33 | 504 | 1961 | 11.032132 | |||
48 | 130 | 1988 | 50 | 560 | 1962 | 11.384714 | |||
45 | 135 | 1973 | 40 | 512 | 1963 | 11.611703 | |||
17 | 114 | 1981 | 31 | 448 | 1964 | 12.266443 | |||
20 | 116 | 1983 | 40 | 538 | 1965 | 12.813883 | |||
19 | 124 | 1968 | 27 | 410 | 1966 | 13.016213 | |||
36 | 136 | 1927 | 31 | 409 | 1967 | 12.964814 | |||
50 | 142 | 1969 | 35 | 504 | 1968 | 13.730252 | |||
39 | 120 | 1988 | 57 | 777 | 1969 | 14.665157 | |||
21 | 120 | 1987 | 31 | 496 | 1970 | 15.392277 | |||
44 | 160 | 1960 | 26 | 386 | 1971 | 15.720841 | |||
53 | 158 | 1984 | 39 | 530 | 1972 | 16.197464 | |||
63 | 144 | 1976 | 25 | 360 | 1973 | 16.907173 | |||
29 | 130 | 1920 | 23 | 355 | 1974 | 16.97702 | |||
25 | 125 | 1931 | 102 | 1250 | 1975 | 16.72403 | |||
69 | 175 | 1989 | 72 | 802 | 1976 | 17.6721 | |||
1907 | 57 | 741 | 1977 | 18.195684 | |||||
1988 | 54 | 739 | 1978 | 18.798212 | |||||
1990 | 56 | 650 | 1979 | 19.640699 | |||||
1973 | 45 | 592 | 1980 | 19.935295 | |||||
1983 | 42 | 577 | 1981 | 19.903635 | |||||
1971 | 36 | 500 | 1982 | 19.723139 | |||||
1969 | 30 | 469 | 1983 | 19.985983 | |||||
1971 | 22 | 320 | |||||||
1988 | 31 | 441 | |||||||
1989 | 52 | 845 | |||||||
1973 | 29 | 435 | |||||||
1987 | 34 | 435 | |||||||
1931 | 20 | 375 | |||||||
1931 | 33 | 364 | |||||||
1924 | 18 | 340 | |||||||
1931 | 23 | 375 | |||||||
1991 | 30 | 450 | |||||||
1973 | 38 | 529 | |||||||
1976 | 31 | 412 | |||||||
1990 | 62 | 722 | |||||||
1983 | 48 | 574 | |||||||
1984 | 29 | 498 | |||||||
1986 | 40 | 493 | |||||||
1986 | 30 | 379 | |||||||
1992 | 42 | 579 | |||||||
1973 | 36 | 458 | |||||||
1988 | 33 | 454 | |||||||
1979 | 72 | 952 | |||||||
1972 | 57 | 784 | |||||||
1930 | 34 | 476 | |||||||
1978 | 46 | 453 | |||||||
1978 | 30 | 440 | |||||||
1977 | 21 | 428 | |||||||
Have a look at the Germany GDP data-
Year | German GDP |
1950 | 5.725433 |
1951 | 6.256754 |
1952 | 6.70308 |
1953 | 7.256435 |
1954 | 7.72644 |
1955 | 8.570349 |
1956 | 9.076571 |
1957 | 9.45931 |
1958 | 9.665697 |
1959 | 10.259906 |
1960 | 10.608815 |
1961 | 11.032132 |
1962 | 11.384714 |
1963 | 11.611703 |
1964 | 12.266443 |
1965 | 12.813883 |
1966 | 13.016213 |
1967 | 12.964814 |
1968 | 13.730252 |
1969 | 14.665157 |
1970 | 15.392277 |
1971 | 15.720841 |
1972 | 16.197464 |
1973 | 16.907173 |
1974 | 16.97702 |
1975 | 16.72403 |
1976 | 17.6721 |
1977 | 18.195684 |
1978 | 18.798212 |
1979 | 19.640699 |
1980 | 19.935295 |
1981 | 19.903635 |
1982 | 19.723139 |
1983 | 19.985983 |
The Standard Deviation can be found out in two ways-
a) Traditional Method:
Mean = Average of the Data
= (5.27+6.25+....+19.72+19.98)/34 = 13.42
Standard Deviation = { (5.27-13.42)^2 + (6.25-13.42)^2 + ... + (19.72-13.42)^2 + (19.98-13.42)^2 }/34
= 4.41
b) Using Excel:
Use the function Stdev.p(5.27:19.98) = 4.41
That will be Option- (c)
Let me know if you need anything else, if not please don't forget to like the answer :)