In: Statistics and Probability
Between two variables analyzing with basic correlation and regreation with getting at least 11 datas. What Y=? When X=9
(Determine the datas by yourself)
Consider the two variables are:
x |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
Y |
9 |
8 |
10 |
12 |
11 |
13 |
14 |
16 |
15 |
17 |
18 |
Straight line equation is y = a+ bx.
The normal equations are
∑y = an + b ∑x
∑xy = a ∑x + b ∑x²
x |
y |
x² |
xy |
1 |
9 |
1 |
9 |
2 |
8 |
4 |
16 |
3 |
10 |
9 |
30 |
4 |
12 |
16 |
48 |
5 |
11 |
25 |
55 |
6 |
13 |
36 |
78 |
7 |
14 |
49 |
98 |
8 |
16 |
64 |
128 |
9 |
15 |
81 |
135 |
10 |
17 |
100 |
170 |
11 |
18 |
121 |
198 |
∑x = 66 |
∑y = 143 |
∑ x² = 506 |
∑xy = 965 |
Substituting these values in the normal equations
143 = 11a + 66b
965 = 66a + 506b
Solving these two equations using Elimination method,
11a + 66b = 143
11(a+6b)=11⋅13
a + 6b =13
--------------------------(1)
and
66a + 506 b = 965------------------(2)
Equation (1) ×66⇒
66a + 396b = 858
equation (2) ×1⇒
66a + 506b = 965
Substracting ⇒
-110b = -107
110b = 107
b = 107 / 110
b = 0.97
Putting b=107 / 110 in equation (1), we have
a + 6(107 / 110) = 13
a =13 - (321 / 55)
a=394 / 55
a= 7.16
a=394 / 55 and b=107 / 110
N ow substituting this values in the equation is y= a + bx, we
get
y = (394 / 55) + (107 / 110) x
y= 7.16 + 0.97x
when x = 9
y = 7.16 + (0.97)(9)
y = 15.89