Question

In: Statistics and Probability

Suppose the scores of students on an exam are normally distributed with a mean of 340...

Suppose the scores of students on an exam are normally distributed with a mean of 340 and a standard deviation of 57. Then according to the Empirical Rule approximately 99.7 of the exam scores lie between the integers    and    .

Solutions

Expert Solution

In this problem we're given that the scores of students on an exam are normally distributed with mean of 340 and standard deviation of 57.

The Empirical Rule says that, in a Normal data set, virtually every piece of data, will fall within three standard deviations of the mean.So, 99.7%(nearly all the data) exam scores fall within three standard deviations of the mean(known as the 3-sigma limit).The 0.3% the remains is used to account for outliers, which exist in almost every data set.

.

Then according to the Empirical Rule approximately 99.7 of the exam scores lie between the integers 169 and 511.

Let, X: be the random variable denoting the scores of students on an exam.

Now,

  

  

  

  %

Hence, then according to the Empirical Rule approximately 99.7 of the exam scores lie between the integers 169 and 511.

I hope this clarifies your doubt. If you're satisfied with the solution, hit the Like button. For further clarification, comment below. Thank You. :)


Related Solutions

Suppose scores on a college entrance exam are normally distributed with a mean of 550 and...
Suppose scores on a college entrance exam are normally distributed with a mean of 550 and a standard deviation of 100. Find the score that marks the cut-off for the top 16% of the scores. Round to two decimal places. Question 5 options: 450.55 649.45 462.89 508.34 Question 6 (1 point) Suppose scores on a college entrance exam are normally distributed with a mean of 550 and a standard deviation of 100. Find the cut-off scores that define the middle...
Suppose the test scores for a college entrance exam are normally distributed with a mean of...
Suppose the test scores for a college entrance exam are normally distributed with a mean of 450 and a s. d. of 100. a. What is the probability that a student scores between 350 and 550? b. If the upper 3% scholarship, what score must a student receive to get a scholarship? c. Find the 60th percentile of the test scores. d. Find the middle 30% of the test scores.
The scores on an anthropology exam are normally distributed with a mean of 76 and a...
The scores on an anthropology exam are normally distributed with a mean of 76 and a standard deviation of 5. Show your work step by step to receive full credit. 1) (6 points) The failing grade is anything 2.5 or more standard deviations below the mean. What is the cutoff for a failing score? 2) (6 points) If 3000 students took the exam, how many students failed? 3) (6 points) If 3000 students took the exam and the cutoff for...
1) Suppose the scores of students on a Statistics course are Normally distributed with a mean...
1) Suppose the scores of students on a Statistics course are Normally distributed with a mean of 542 and a standard deviation of 98. What percentage of the students scored between 542 and 738 on the exam? (Give your answer to 3 significant figures.) 2) A new car that is a gas- and electric-powered hybrid has recently hit the market. The distance travelled on 1 gallon of fuel is normally distributed with a mean of 65 miles and a standard...
Given the scores on a certain exam are normally distributed with a mean of 75 and...
Given the scores on a certain exam are normally distributed with a mean of 75 and a standard deviation of 5 a. Calculate the z-score for 80. Find the percentage of students with scores above 80 b. Calculate the z-score for 60. Find the percentage of students with scores below 60. c. Calculate the z-scores for 70 and 90. Find the percentage of students with scores between 70 and 90. d. What is the median? e. What test score value...
Suppose that GMAT scores of all MBA students in Canada are normally distributed with a mean...
Suppose that GMAT scores of all MBA students in Canada are normally distributed with a mean of 550 and a standard deviation of 120. a. A university (that is representative of the MBA students in the U.S.) claims that the average GMAT scores of students in its MBA program are at least 550. You take a sample of 121 students in the university and find their mean GMAT score is 530. Can you still support the University’s claim? Test at...
A sample of final exam scores is normally distributed with a mean equal to 29 and...
A sample of final exam scores is normally distributed with a mean equal to 29 and a variance equal to 25. Part (a) What percentage of scores are between 24 and 34? (Round your answer to two decimal places.) Part (b) What raw score is the cutoff for the top 10% of scores? (Round your answer to one decimal place.) Part (c) What is the proportion below 23? (Round your answer to four decimal places.) Part (d) What is the...
A sample of final exam scores is normally distributed with a mean equal to 25 and...
A sample of final exam scores is normally distributed with a mean equal to 25 and a variance equal to 16. Part (a) What percentage of scares are between 21 and 29? (Round your answer to two decimal places) Part (b) What raw score is the cutiff for the top 10% of scores? (Round your answer to one decimal place) Part (c) What is the proportion below 20? (Round your answer to four decimal places) Part (d) What is the...
A set of exam scores is normally distributed with a mean = 82 and standard deviation...
A set of exam scores is normally distributed with a mean = 82 and standard deviation = 4. Use the Empirical Rule to complete the following sentences. 68% of the scores are between and . 95% of the scores are between and . 99.7% of the scores are between and . LicensePoints possible: 3 This is attempt 1 of 3.
A sample of final exam scores is normally distributed with a mean equal to 24 and...
A sample of final exam scores is normally distributed with a mean equal to 24 and a variance equal to 25. Part (a) What percentage of scores are between 19 and 29? (Round your answer to two decimal places.) % Part (b) What raw score is the cutoff for the top 10% of scores? (Round your answer to one decimal place.) Part (c) What is the proportion below 18? (Round your answer to four decimal places.) Part (d) What is...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT