Question

In: Math

A plane delivers two types of cargo between two destinations. Each crate of cargo I is...

A plane delivers two types of cargo between two destinations. Each crate of cargo I is 3 cubic feet in volume and 137 pounds in weight, and earns $30 in revenue. Each crate of cargo II is 3 cubic feet in volume and 274 pounds in weight, and earns $45 in revenue. The plane has available at most 270 cubic feet and 14,248 pounds for the crates. Finally, at least twice the number of crates of I as II must be shipped. Find the number of crates of each cargo to ship in order to maximize revenue. Find the maximum revenue.

crates of cargo I
crates of cargo II
maximum revenue $

Solutions

Expert Solution

Let x crates of cargo I and y crates of cargo II be shipped. Each crate of cargo I and cargo II is 3 cubic feet in volume , and the plane has available at most 270 cubic feet so that 3x+3y ≤ 270 or, x+y ≤ 90…(1)

Also, each crate of cargo I weighs 137 pounds and each crate of and cargo II weighs 274 pounds and the plane has available at most 14,248 pounds for the crates so that 137x +274y ≤ 14248 or, x+2y ≤ 104…(2)

Further, since at least twice the number of crates of I as II must be shipped, hence x ≥ 2y…(3)

The revenue function is R(x) = 30x+45y. We have to maximize R(x) subject to the above 3 constraints.

The graph of the lines y = 90-x (in red)… (1), y = -x/2+52 ( in blue)…(2) and y = x/2( in green)…(3) is attached. The feasible region Δ ABC is in the 1st quadrant ( as both x and y should be positive integers) on or below the 1st ,2nd and the 3rd lines. Here A is the point of intersection of the 2nd and the 3rd lines, B is the point where the 3rd line meets the X-Axis and C is the point where the 1st line meets the X-Axis. Of these 3 points, we can easily rule out the points B and C as y cannot be 0. Now, at the point A, we have x = 52 and y = 26. Then R(x) = 30* 52+45*26 =1560+1170 = $ 2730.

Thus, for maximizing the revenue, we should have

crates of cargo I                : 52

crates of cargo II: 26

maximum revenue: $ 2730


Related Solutions

A plane delivers two types of cargo between two destinations. Each crate of cargo I is...
A plane delivers two types of cargo between two destinations. Each crate of cargo I is 7 cubic feet in volume and 131 pounds in weight, and earns $20 in revenue. Each crate of cargo II is 7 cubic feet in volume and 262 pounds in weight, and earns $25 in revenue. The plane has available at most 525 cubic feet and 12,576 pounds for the crates. Finally, at least twice the number of crates of I as II must...
A plane delivers two types of cargo between two destinations. Each crate of cargo I is...
A plane delivers two types of cargo between two destinations. Each crate of cargo I is 5 cubic feet in volume and 145 pounds in weight, and earns $35 in revenue. Each crate of cargo II is 5 cubic feet in volume and 290 pounds in weight, and earns $45 in revenue. The plane has available at most 425 cubic feet and 13,920 pounds for the crates. Finally, at least twice the number of crates of I as II must...
A plane delivers two types of cargo between two destinations. Each crate of cargo I is...
A plane delivers two types of cargo between two destinations. Each crate of cargo I is 7 cubic feet in volume and 131 pounds in weight, and earns $20 in revenue. Each crate of cargo II is 7 cubic feet in volume and 262 pounds in weight, and earns $25 in revenue. The plane has available at most 525 cubic feet and 12,576 pounds for the crates. Finally, at least twice the number of crates of I as II must...
A farm delivers salad boxes to two supermarkets each week; one in Fredericton and one in...
A farm delivers salad boxes to two supermarkets each week; one in Fredericton and one in Oromocto. The store in Fredericton needs at least 150 boxes per week, and the Oromocto store needs at least 92 boxes per week. The farm can send at most 300 boxes per week to these two stores. It costs $2 per box to ship to Fredericton store and $3 per box to ship to Oromocto store. The farm expects to make a profit of...
i) A circular coil with radius 20 cm is placed with it’s plane parallel and between...
i) A circular coil with radius 20 cm is placed with it’s plane parallel and between two straight wires P and Q. The coil carries current Icoil = 0.5A . Icoil is in clockwise direction when viewed from left side. Wire P is located 40 cm to the left of a circular coil and carries current Ip = 0.2A while wire Q is located 80 cm to the right of the circular coil and carries current IQ = 0.6A. Both...
Consider a game with two players, each of whom has two types. The types of player...
Consider a game with two players, each of whom has two types. The types of player 1 are T1 = (a,b). The types of player 2 are T2 = (c,d). Suppose the beliefs of the types are p1(c/a) = p2(a/c) = 0.25 and p1(c/b) = p2(a/d) = 0.75. Is there a common prior? If yes, construct one; if no, prove why not.
With two examples each, distinguish between the following pairs of terms a. i. Probability and non-probability...
With two examples each, distinguish between the following pairs of terms a. i. Probability and non-probability sampling                                                        [ 4 Marks ]                              ii. Open-ended and closed-ended questions                                                      [ 4 Marks ]                               Accessible and target population                                                                  [ 4 Marks ]                             Likert scale and Ranking questions [ 4 Marks ]                                                                                                 Multiple choice and contingent questions. [ 4 Marks ]                                                                                       
Differentiate between two types of nephrons found in kidneys
Differentiate between two types of nephrons found in kidneys
For the Poincare plane, find two lines L1 and L2 and a point P off each...
For the Poincare plane, find two lines L1 and L2 and a point P off each such that through P there are exactly two lines parallel to both L1 and L2.
Two infinite planes of charge lie parallel to each other and to the yz plane. One...
Two infinite planes of charge lie parallel to each other and to the yz plane. One is at x = -2 m and has a surface charge density of ϝ = -3.2 µC/m2. The other is at x = 3 m and has a surface charge density of ϝ = 4.0 µC/m2. Find the electric field for the following locations. (a) x < -2 m = N/C (i hat) (b) -2 m < x < 3 m = N/C (i...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT