In: Statistics and Probability
a)
p=0.38
n-145
Standard Error , SE = √( p(1-p)/n ) = 0.0403
b)
population proportion ,p= 0.38
n= 145
std error , SE = √( p(1-p)/n ) = 0.040
sample proportion , p̂ = 0.34
Z=( p̂ - p )/SE= ( 0.340 -
0.38 ) / 0.040 =
-0.992
P ( p̂ < 0.340 ) =P(Z<( p̂ - p )/SE)
=
=P(Z < -0.992 ) =
0.1605
(answer)
c)
population
proportion ,p= 0.38
n= 145
std error
, SE = √( p(1-p)/n ) = 0.0403
we need to
compute probability for
0.32 < p̂ < 0.43
Z1 =( p̂1
- p )/SE= ( 0.32 -
0.38 ) / 0.0403 =
-1.488
Z2 =( p̂2
- p )/SE= ( 0.43 -
0.38 ) / 0.0403 =
1.240
P( 0.32 < p̂ <
0.43 ) = P[( p̂1-p )/SE< Z
<(p̂2-p)/SE ] =P( -1.488
< Z < 1.240 )
= P ( Z < 1.240 ) - P (
-1.488 ) = 0.8926
- 0.068 = 0.8243
(answer)
d)
The standard error would be reduced, which would, in turn, increase the probabilities that the sample proportions will be closer to the population proportion