Question

In: Advanced Math

Let X be a set containing infinitely many elements, and let d be a metrio on...

Let X be a set containing infinitely many elements, and let d be a metrio on X. Prove that X contains an open set U such that U and its complement Uc = X\U are both infinite

Solutions

Expert Solution


Related Solutions

Let A be a set with m elements and B a set of n elements, where...
Let A be a set with m elements and B a set of n elements, where m; n are positive integers. Find the number of one-to-one functions from A to B.
Let S be a set and P be a property of the elements of the set,...
Let S be a set and P be a property of the elements of the set, such that each element either has property P or not. For example, maybe S is the set of your classmates, and P is "likes Japanese food." Then if s ∈ S is a classmate, he/she either likes Japanese food (so s has property P) or does not (so s does not have property P). Suppose Pr(s has property P) = p for a uniformly...
Let x be a set and let R be a relation on x such x is...
Let x be a set and let R be a relation on x such x is simultaneously reflexive, symmetric, and antisymmetric. Prove equivalence relation.
Provide an example: 1) A sequence with infinitely many terms equal to 1 and infinitely many...
Provide an example: 1) A sequence with infinitely many terms equal to 1 and infinitely many terms that are not equal to 1 that is convergent. 2) A sequence that converges to 1 and has exactly one term equal to 1. 3) A sequence that converges to 1, but all of its terms are irrational numbers.
Let S be a set of n numbers. Let X be the set of all subsets...
Let S be a set of n numbers. Let X be the set of all subsets of S of size k, and let Y be the set of all ordered k-tuples (s1, s2,   , sk) such that s1 < s2 <    < sk. That is, X = {{s1, s2,   , sk} | si  S and all si's are distinct}, and Y = {(s1, s2,   , sk) | si  S and s1 < s2 <    < sk}. (a) Define a one-to-one correspondence f : X → Y. Explain...
1. Let A be the set whose elements are the months of the year that begin...
1. Let A be the set whose elements are the months of the year that begin with the letter J. A = { } 2. Define a set that is empty. Let B be the set: _________________________________________________________________________ _________________________________________________________________________ 3. The following data was collected from a survey of 350 San Antonio residents Are you a Spurs fan? YES NO Male 204 19 Female 113 14 a. How many males were surveyed? b. How many spurs fans were surveyed? c. How...
Let D(x, y) be the predicate defined on natural numbers x and y as follows: D(x,...
Let D(x, y) be the predicate defined on natural numbers x and y as follows: D(x, y) is true whenever y divides x, otherwise it is false. Additionally, D(x, 0) is false no matter what x is (since dividing by zero is a no-no!). Let P(x) be the predicate defined on natural numbers that is true if and only if x is a prime number. 1. Write P(x) as a predicate formula involving quantifiers, logical connectives, and the predicate D(x,...
let D be an integral domain. prove that an element of D[x] is a unit if...
let D be an integral domain. prove that an element of D[x] is a unit if an only if it is a unit in D.
Let (X, d) be a metric space. Prove that every metric space (X, d) is homeomorphic...
Let (X, d) be a metric space. Prove that every metric space (X, d) is homeomorphic to a metric space (Y, dY ) of diameter at most 1.
Let p be an element in N, and define d _p to be the set of...
Let p be an element in N, and define d _p to be the set of all pairs (l,m) in N×N such that p divides m−l. Show that d_p is an equivalence relation
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT