Question

In: Physics

A basketball is thrown vertically up from a 1.6‑m height with an initial speed v0 =...

A basketball is thrown vertically up from a 1.6‑m height with an initial speed v0 = 23 m/s. At what speed will the ball hit the ground?

The speed of the ball, v1 =  

How long will it take for the ball to reach the ground?

The time of flight, t1 =  

Now the basketball is thrown vertically down from the same 1.6‑m height and with the same initial speed v0 = 23 m/s. First, check your physical intuition and complete the following two statements:

If the initial velocity is directed down, the final speed of the ball (Select an answer: decreases, increases, stays the same, do not know) .

If the initial velocity is directed down, the time of the free fall (Select an answer: decreases, stays the same, increases, do not know) .

Now, with the new conditions, what will be the speed of the ball just before it hits the ground?

The speed of the ball, v2 =  

How long will it take for the ball to reach the ground?

The time of flight, t2 =  

Solutions

Expert Solution

please upvote the answer and provide feedback which helps in improving answers


Related Solutions

•A ball is thrown upward from an initial height of   4.9 m with an initial speed...
•A ball is thrown upward from an initial height of   4.9 m with an initial speed of 9.8 m/s •How high is the ball 2.0 s later? •What is the velocity of the ball at its highest point •When does it reach Its highest point •How high does the ball go? •When does the ball hit the ground? •How fast is it going when (right before) it hits the ground?
An object is thrown vertically upward with an initial velocity of 10 m/sec from a height...
An object is thrown vertically upward with an initial velocity of 10 m/sec from a height of 3 meters. In meters, find the highest point it reaches. (Round your answer to three decimal places, in m) Find when it hits the ground. (Enter your answer in seconds. Round your answer to three decimal places in seconds)
The trajectory of a rock thrown from a height with an initial speed of 19.7 m/s...
The trajectory of a rock thrown from a height with an initial speed of 19.7 m/s is shown in the figure below. Evaluate the magnitude of the gravitational field at the surface of the planet. The planet has no atmosphere.
A blue ball is thrown upward with an initial speed of 24.3 m/s, from a height...
A blue ball is thrown upward with an initial speed of 24.3 m/s, from a height of 0.9 meters above the ground. 3 seconds after the blue ball is thrown, a red ball is thrown down with an initial speed of 8.2 m/s from a height of 33.3 meters above the ground. The force of gravity due to the earth results in the balls each having a constant downward acceleration of 9.81 m/s2. 4) What is the height of the...
A blue ball is thrown upward with an initial speed of 22.2 m/s, from a height...
A blue ball is thrown upward with an initial speed of 22.2 m/s, from a height of 0.5 meters above the ground. 2.7 seconds after the blue ball is thrown, a red ball is thrown down with an initial speed of 10.7 m/s from a height of 26.9 meters above the ground. The force of gravity due to the earth results in the balls each having a constant downward acceleration of 9.81 m/s2 a. What is the height of the...
A red ball is thrown down with an initial speed of 1.4 m/s from a height...
A red ball is thrown down with an initial speed of 1.4 m/s from a height of 29 meters above the ground. Then, 0.6 seconds after the red ball is thrown, a blue ball is thrown upward with an initial speed of 25.6 m/s, from a height of 1 meters above the ground. The force of gravity due to the earth results in the balls each having a constant downward acceleration of 9.81 m/s2. 1) What is the speed of...
A red ball is thrown down with an initial speed of 1.3 m/s from a height...
A red ball is thrown down with an initial speed of 1.3 m/s from a height of 27 meters above the ground. Then, 0.5 seconds after the red ball is thrown, a blue ball is thrown upward with an initial speed of 23.9 m/s, from a height of 0.7 meters above the ground. The force of gravity due to the earth results in the balls each having a constant downward acceleration of 9.81 m/s2. 1) What is the speed of...
A red ball is thrown down with an initial speed of 1.3 m/s from a height...
A red ball is thrown down with an initial speed of 1.3 m/s from a height of 27 meters above the ground. Then, 0.5 seconds after the red ball is thrown, a blue ball is thrown upward with an initial speed of 24.8 m/s, from a height of 0.7 meters above the ground. The force of gravity due to the earth results in the balls each having a constant downward acceleration of 9.81 m/s2. 1) What is the speed of...
a ball thrown straight up returns to its starting height in 7.2s.its initial speed was----------m/s.
a ball thrown straight up returns to its starting height in 7.2s.its initial speed was----------m/s.
A projectile of mass m = 5kg is thrown upward vertically with a velocity v0 =...
A projectile of mass m = 5kg is thrown upward vertically with a velocity v0 = 9 m/s a) Starting with Newton's 2nd Law FNet = ma, calculate the time to an accuracy of four decimal places at which the maximum height is reached when no air resistance is present. b) Starting with Newton's 2nd Law FNet = ma, calculate the time to an accuracy of four decimal places at which the maximum height is reached when considering the following...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT