Question

In: Physics

A police siren of frequency is attached to a vibrating platform. The platform and siren oscillate...

A police siren of frequency is attached to a vibrating platform. The platform and siren oscillate up and down in simple harmonic motion with amplitude and frequency . (a) Find the maximum and minimum sound frequencies that you would hear at a position directly above the siren. (b) At what point in the motion of the platform is the maximum frequency heard? The minimum frequency? Explain.

Can you explain part B in details?thank you

Solutions

Expert Solution


Related Solutions

A police car sounding a siren with a frequency of 1550 Hz is traveling at 130...
A police car sounding a siren with a frequency of 1550 Hz is traveling at 130 km/h . What frequencies does an observer standing next to the road hear as the car approaches? As it recedes? What frequencies are heard in a car traveling at 90.0 km/h in the opposite direction before and after passing the police car? For both approaching and receding The police car passes a car traveling in the same direction at 80.0 km/h. What two frequencies...
Lab 11. Simple Harmonic Motion Introduction Lots of things vibrate or oscillate. A vibrating tuning fork,...
Lab 11. Simple Harmonic Motion Introduction Lots of things vibrate or oscillate. A vibrating tuning fork, a moving child’s playground swing, and the speaker in a headphone are all examples of physical vibrations. There are also electrical and acoustical vibrations, such as radio signals and the sound you get when blowing across the top of an open bottle. Adding heat to a solid increases the vibration of atoms and molecules. One simple system that vibrates is a mass hanging from...
a It was observed that natural frequency of a torsional pendulum when vibrating in vacuum is...
a It was observed that natural frequency of a torsional pendulum when vibrating in vacuum is 280Hz. But, the damping frequency is 220Hz when the same pendulum is dipped in an oil of specific gravity 0.9. Find the value of damping factor of the oil. (Hint: There is no damping in case of vacuum) b A vibratory system weighing 1.5tonnes has the the following successive amplitudes: 5.00, 3.15, 2.00, 0.75, 0.50, 0.30, 0.20, 0.10 mm respectively. The time gap between...
A tuning fork on a movable cart is vibrating at a frequency of 1500 Hz. As...
A tuning fork on a movable cart is vibrating at a frequency of 1500 Hz. As you are walking past the cart at 2 m/sec, the cart begins accelerating uniformly in the direction you’re walking. When it is 20 m in front of you, the sound of the tuning fork is heard to be at a frequency of 1380 Hz. Knowing that the air temperature at your location is 23.6°C, determine the acceleration of the cart.
1. A vibrating string is cut in half. The fundamental frequency of the string will be......
1. A vibrating string is cut in half. The fundamental frequency of the string will be... a. doubled b. unchanged c. reduced by half 2.On a pipe organ, for a closed pipe, if you double the length of the pipe, what happens to the fundamental frequency? a. It does not change. b. It doubles. c. It is reduced by half. d. It is reduced by 1/4. e. It is increased 4x. 3. When you blow gently across the top of...
A person hears a siren as a fire truck approaches and passes by. The frequency varies...
A person hears a siren as a fire truck approaches and passes by. The frequency varies from 480Hz on approach to 400Hz going away. What is the speed of the truck if the speed of sound in air is 343m/s?
A police car is moving at a speed of 20.0 mi/h, its siren emits a sinusoidal...
A police car is moving at a speed of 20.0 mi/h, its siren emits a sinusoidal wave with frequency 5.00×102 Hz to alert Regina Transit bus of a trafic violation. The air temperature is 24.0◦C. a) What is the overall change in frequency heard by the passanger waiting for the bus in the bus stop as the police car aproaches, and moves away from the passanger ? b) What is the wavelength detected by the passenger waiting for the bus...
Question 1: SOUND a) A bystander hears a siren vary in frequency from 570 Hz to...
Question 1: SOUND a) A bystander hears a siren vary in frequency from 570 Hz to 398 Hz as a fire truck approaches, passes by, and moves away on a straight street. What is the speed of the truck? (Take the speed of sound in air to be 343 m/s.) By how many decibels do you reduce the sound intensity level due to a source of sound if you triple your distance from it? Assume that the waves expand spherically....
Please write down in Verilog code with testbench: Audio Tone Generator like Ambulance siren or Police...
Please write down in Verilog code with testbench: Audio Tone Generator like Ambulance siren or Police siren.
A siren emitting a sound of frequency 1100 Hz moves away from you toward the face...
A siren emitting a sound of frequency 1100 Hz moves away from you toward the face of a cliff at a speed of 15 m/s. Take the speed of sound in air as 330 m/s. (a) What is the frequency of the sound you hear coming directly from the siren? (Give your answer to at least one decimal place.) Hz (b) What is the frequency of the sound you hear reflected off the cliff? (Give your answer to at least...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT