In: Finance
Marie Bain is the production manager at a company that manufactures hot water heaters. Marie needs a demand forecast for the next few years to help decide whether to add new production capacity. The company's sales history (in thousands of units) is shown in the table below. Construct a forecast for period 7 in two ways. First, use exponential smoothing where the initial forecast for period 1 was 11 units and the smoothing constant is α = 0.5. For the second forecast, use linear regression. Which forecasting method is likely to give a better forecast for period 7 and why? Please show all work in excel!
Period |
Actual |
Forecast |
1 |
12 |
11.00 |
2 |
16 |
|
3 |
14 |
|
4 |
17 |
|
5 |
16 |
|
6 |
18 |
Exponential Smoothing: | ||||||||||
Ft+1=Ft+alpha*(At-Ft) | ||||||||||
Ft+1=alpha*At+(1-alpha))*Ft | ||||||||||
Ft+1=Forecast in period (t+1) | ||||||||||
Ft=Forecast in period t | ||||||||||
At=Actual Value in period t | ||||||||||
alpha=smoothing constant=0.5 | ||||||||||
Ft+1=alpha*At+(1-alpha))*Ft | ||||||||||
Ft+1=0.5*At+(1-0.5)*Ft | 0 | |||||||||
Ft+1=0.5*At+0.5*Ft | At | Ft | ||||||||
Period | Actual | Forecast | Forecast calculation | |||||||
1 | 12 | 11.00 | ||||||||
2 | 16 | 11.5 | 0.5*12+0.5*11 | |||||||
3 | 14 | 13.75 | 0.5*16+0.5*11.5 | |||||||
4 | 17 | 13.875 | 0.5*14+0.5*13.75 | |||||||
5 | 16 | 15.4375 | 0.5*17+0.5*13.875 | |||||||
6 | 18 | 15.71875 | 0.5*16+0.5*15.4375 | |||||||
7 | 16.85938 | 0.5*18+0.5*15.71875 | ||||||||
Forecast for period 7 | 16.85938 | |||||||||
Linear Regression | ||||||||||
X Variables=Period | ||||||||||
Y Variables=Demand | ||||||||||
Using Regression Tool of Data Analysis of excel | ||||||||||
Input Y range=Demands | ||||||||||
Input X range=Periods | ||||||||||
SUMMARY OUTPUT | ||||||||||
Regression Statistics | ||||||||||
Multiple R | 0.813638 | |||||||||
R Square | 0.662006 | |||||||||
Adjusted R Square | 0.577508 | |||||||||
Standard Error | 1.409154 | |||||||||
Observations | 6 | |||||||||
ANOVA | ||||||||||
df | SS | MS | F | Significance F | ||||||
Regression | 1 | 15.55714 | 15.55714286 | 7.834532 | 0.04886 | |||||
Residual | 4 | 7.942857 | 1.985714286 | |||||||
Total | 5 | 23.5 | ||||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |||
Intercept | 12.2 | 1.311851 | 9.29983844 | 0.000744 | 8.557718 | 15.84228 | 8.557718 | 15.84228 | ||
X Variable 1 | 0.942857 | 0.336852 | 2.799023468 | 0.04886 | 0.007606 | 1.878109 | 0.007606 | 1.878109 | ||
Regression Equation: | ||||||||||
Y=12.2+0.942857*X | ||||||||||
Period =X=7 | ||||||||||
Forecast Demand=Y=12.2+0.942857*7= | 18.8 | |||||||||
Forecast for Period 7 | 18.8 | |||||||||
Regression method gives a better forecast | ||||||||||
The error between forecast and actual is minimized under this method | ||||||||||