Question

In: Physics

Given that the average number of fast neutrons emitted following the thermal-neutron induced fission of 235U...

Given that the average number of fast neutrons emitted following the thermal-neutron induced fission of 235U is 2.42 per fission event; use the following data to calculate the mean number of fission neutrons produced per initial thermal neutron in a large volume sample of
(a) pure 235U (b) natural uranium 238U, and (c) uranium enriched to 3% in the 235U isotope.
Note: The microscopic absorption cross section for 235U is 694 barns. The cross section for 238U is 2.71 barns. The fission cross section for 235U is 582 barns. Natural uranium contains 0.7% 235U.
Comment on you results in terms of operation of a thermal reactor of finite size.

Solutions

Expert Solution


Related Solutions

In a nuclear reactor, in the fission process, neutrons are emitted at high energies. Neutrons are...
In a nuclear reactor, in the fission process, neutrons are emitted at high energies. Neutrons are to be thermalized, i.e., their kinetic energies have to be significantly reduced, so that you can increase the probability for the new fission processes. You have a choice of a number of materials such as, say, heavy, water, iron and lead. The neutrons experience elastic collisions with the atoms of these materials and lose their energies. Assuming the target atoms are at rest initially,...
In a single neutron induced fission of a 23592U nucleus, one of the fission products is...
In a single neutron induced fission of a 23592U nucleus, one of the fission products is 9942Mo. The second fission product is not identified, but it is known that it has a binding energy of 1083.7 MeV. 3 neutrons are released. Use the following data: mn=1.008665 u, mp=1.007276 u, mU−235=235.0439 u, mMo−99=98.9077 u i) What is the mass of the second fission product? ii) What is the amount of energy released in this fission reaction? please make your writing clear...
Assume that a neutron that was just emitted as the result of a nuclear fission process...
Assume that a neutron that was just emitted as the result of a nuclear fission process in the core of a commercial Fukushima type boiling water reactor. Describe its initial state then describe at least five distinct and possible futures that could happen to the neutron after its emission. Please include diagram if possible
16- how do long counters used in neutron detectors? 17- what are fast neutrons induced reactions?...
16- how do long counters used in neutron detectors? 17- what are fast neutrons induced reactions? 18- fast neutron scattering 19- what are proton recoil scintillators? How do they work? [Please submit the answer using text so I can just copy and paste it, thank you]
a.) A neutron can cause 235U to fission, producing two daughter nuclei (tin and molybdenum) and...
a.) A neutron can cause 235U to fission, producing two daughter nuclei (tin and molybdenum) and three more neutrons. These three neutrons can then, in turn, cause three more 235U nuclei to split. One typical reaction is summarized as follows: n + 235U ® 131Sn + 102Mo + 3 1n Find the energy released in this process (in MeV), given that M(235U)=235.0439 u; M(131Sn)=130.9169 u; M(102Mo)=101.9103 u. b.)Lise Meitner’s work in 1938 predicted that the fission of 235U would produce...
A nuclear power reactor produces 3GW of thermal power from the fission of 235U for a...
A nuclear power reactor produces 3GW of thermal power from the fission of 235U for a period of 10 weeks and then it is shut down. Note: All numerical answers are expected with 3 significant figures. (a) Assuming 78% of the 200MeV released per fission event is converted to heat, estimate the number of 235U nuclei fissioned over the 10 week period. (b) 6 % of the 235U fission events produce as a fission fragment some radioactive nuclide X (e.g....
On neutron-capture induced fission, 235 92U typically splits into two new “fission product” 92 nuclei with...
On neutron-capture induced fission, 235 92U typically splits into two new “fission product” 92 nuclei with masses in the ratio 1:1.4. These are born with the same proton to neutron ratio as the original uranium, so they have too many neutrons to be stable at their mass number and are highly radioactive. Energy is released in two stages: first an intermediate or prompt release leading to radioactive fission products in their ground state; and then a much slower release via...
Moderating a Neutron In a nuclear reactor, neutrons released by nuclear fission must be slowed down...
Moderating a Neutron In a nuclear reactor, neutrons released by nuclear fission must be slowed down before they can trigger additional reactions in other nuclei. To see what sort of material is most effective in slowing (or moderating) a neutron, calculate the ratio of a neutron's final kinetic energy to its initial kinetic energy, Kf/Ki, for a head-on elastic collision with each of the following stationary target particles. (Note: The mass of a neutron is m=1.009u, where the atomic mass...
Calculate the macroscopic thermal neutron absorption cross section for uranium enriched to 5% a/o 235U.
Calculate the macroscopic thermal neutron absorption cross section for uranium enriched to 5% a/o 235U.
47. Suppose that 1 kg of U235 undergoes fission by thermal neutrons. Compute the masses (or...
47. Suppose that 1 kg of U235 undergoes fission by thermal neutrons. Compute the masses (or mass equivalents) in grams for the following, which are produced: 1. neutrons, 2. γ-rays, 3. β-rays, 4. neutrinos, 5. kinetic energy, 6. fission products.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT