Question

In: Computer Science

Use Python: Develop neurons and print truth table of the following 2-input logic gates: AND, OR,...

  • Use Python:
  • Develop neurons and print truth table of the following 2-input logic gates: AND, OR, NAND, NOR, XOR, XNOR and 1-input NOT gate

(Notice: use Markdown to explain how you developed a neuron, and to insert images showing the truth table of logic gates before coding)

Solutions

Expert Solution

NAND Logic Gate with 2-bit Binary Input

x: (x1, x2 ) and the corresponding output y

# importing Python library
import numpy as np

# define Unit Step Function
def unitStep(v):
if v >= 0:
return 1
else:
return 0

# design Perceptron Model
def perceptronModel(x, w, b):
v = np.dot(w, x) + b
y = unitStep(v)
return y

# NOT Logic Function
# wNOT = -1, bNOT = 0.5
def NOT_logicFunction(x):
wNOT = -1
bNOT = 0.5
return perceptronModel(x, wNOT, bNOT)

# AND Logic Function
# w1 = 1, w2 = 1, bAND = -1.5
def AND_logicFunction(x):
w = np.array([1, 1])
bAND = -1.5
return perceptronModel(x, w, bAND)

# NAND Logic Function
# with AND and NOT
# function calls in sequence
def NAND_logicFunction(x):
output_AND = AND_logicFunction(x)
output_NOT = NOT_logicFunction(output_AND)
return output_NOT

# testing the Perceptron Model
test1 = np.array([0, 1])
test2 = np.array([1, 1])
test3 = np.array([0, 0])
test4 = np.array([1, 0])

print("NAND({}, {}) = {}".format(0, 1, NAND_logicFunction(test1)))
print("NAND({}, {}) = {}".format(1, 1, NAND_logicFunction(test2)))
print("NAND({}, {}) = {}".format(0, 0, NAND_logicFunction(test3)))
print("NAND({}, {}) = {}".format(1, 0, NAND_logicFunction(test4)))

Output:

NAND(0, 1) = 1
NAND(1, 1) = 0
NAND(0, 0) = 1
NAND(1, 0) = 1
XOR Logic Gate with 2-bit Binary Input

x: (x1 , x2 ) and the corresponding output y

# importing Python library
import numpy as np

# define Unit Step Function
def unitStep(v):
if v >= 0:
return 1
else:
return 0

# design Perceptron Model
def perceptronModel(x, w, b):
v = np.dot(w, x) + b
y = unitStep(v)
return y

# NOT Logic Function
# wNOT = -1, bNOT = 0.5
def NOT_logicFunction(x):
wNOT = -1
bNOT = 0.5
return perceptronModel(x, wNOT, bNOT)

# AND Logic Function
# here w1 = wAND1 = 1,
# w2 = wAND2 = 1, bAND = -1.5
def AND_logicFunction(x):
w = np.array([1, 1])
bAND = -1.5
return perceptronModel(x, w, bAND)

# OR Logic Function
# w1 = 1, w2 = 1, bOR = -0.5
def OR_logicFunction(x):
w = np.array([1, 1])
bOR = -0.5
return perceptronModel(x, w, bOR)

# XOR Logic Function
# with AND, OR and NOT
# function calls in sequence
def XOR_logicFunction(x):
y1 = AND_logicFunction(x)
y2 = OR_logicFunction(x)
y3 = NOT_logicFunction(y1)
final_x = np.array([y2, y3])
finalOutput = AND_logicFunction(final_x)
return finalOutput

# testing the Perceptron Model
test1 = np.array([0, 1])
test2 = np.array([1, 1])
test3 = np.array([0, 0])
test4 = np.array([1, 0])

print("XOR({}, {}) = {}".format(0, 1, XOR_logicFunction(test1)))
print("XOR({}, {}) = {}".format(1, 1, XOR_logicFunction(test2)))
print("XOR({}, {}) = {}".format(0, 0, XOR_logicFunction(test3)))
print("XOR({}, {}) = {}".format(1, 0, XOR_logicFunction(test4)))

Output:

XOR(0, 1) = 1
XOR(1, 1) = 0
XOR(0, 0) = 0
XOR(1, 0) = 1
AND Logic Gate with 2-bit Binary Input

# import Python Libraries
import numpy as np
from matplotlib import pyplot as plt

# Sigmoid Function
def sigmoid(z):
return 1 / (1 + np.exp(-z))

# Initialization of the neural network parameters
# Initialized all the weights in the range of between 0 and 1
# Bias values are initialized to 0
def initializeParameters(inputFeatures, neuronsInHiddenLayers, outputFeatures):
W1 = np.random.randn(neuronsInHiddenLayers, inputFeatures)
W2 = np.random.randn(outputFeatures, neuronsInHiddenLayers)
b1 = np.zeros((neuronsInHiddenLayers, 1))
b2 = np.zeros((outputFeatures, 1))
  
parameters = {"W1" : W1, "b1": b1,
"W2" : W2, "b2": b2}
return parameters

# Forward Propagation
def forwardPropagation(X, Y, parameters):
m = X.shape[1]
W1 = parameters["W1"]
W2 = parameters["W2"]
b1 = parameters["b1"]
b2 = parameters["b2"]

Z1 = np.dot(W1, X) + b1
A1 = sigmoid(Z1)
Z2 = np.dot(W2, A1) + b2
A2 = sigmoid(Z2)

cache = (Z1, A1, W1, b1, Z2, A2, W2, b2)
logprobs = np.multiply(np.log(A2), Y) + np.multiply(np.log(1 - A2), (1 - Y))
cost = -np.sum(logprobs) / m
return cost, cache, A2

# Backward Propagation
def backwardPropagation(X, Y, cache):
m = X.shape[1]
(Z1, A1, W1, b1, Z2, A2, W2, b2) = cache
  
dZ2 = A2 - Y
dW2 = np.dot(dZ2, A1.T) / m
db2 = np.sum(dZ2, axis = 1, keepdims = True)
  
dA1 = np.dot(W2.T, dZ2)
dZ1 = np.multiply(dA1, A1 * (1- A1))
dW1 = np.dot(dZ1, X.T) / m
db1 = np.sum(dZ1, axis = 1, keepdims = True) / m
  
gradients = {"dZ2": dZ2, "dW2": dW2, "db2": db2,
"dZ1": dZ1, "dW1": dW1, "db1": db1}
return gradients

# Updating the weights based on the negative gradients
def updateParameters(parameters, gradients, learningRate):
parameters["W1"] = parameters["W1"] - learningRate * gradients["dW1"]
parameters["W2"] = parameters["W2"] - learningRate * gradients["dW2"]
parameters["b1"] = parameters["b1"] - learningRate * gradients["db1"]
parameters["b2"] = parameters["b2"] - learningRate * gradients["db2"]
return parameters

# Model to learn the AND truth table
X = np.array([[0, 0, 1, 1], [0, 1, 0, 1]]) # AND input
Y = np.array([[0, 0, 0, 1]]) # AND output

# Define model parameters
neuronsInHiddenLayers = 2 # number of hidden layer neurons (2)
inputFeatures = X.shape[0] # number of input features (2)
outputFeatures = Y.shape[0] # number of output features (1)
parameters = initializeParameters(inputFeatures, neuronsInHiddenLayers, outputFeatures)
epoch = 100000
learningRate = 0.01
losses = np.zeros((epoch, 1))

for i in range(epoch):
losses[i, 0], cache, A2 = forwardPropagation(X, Y, parameters)
gradients = backwardPropagation(X, Y, cache)
parameters = updateParameters(parameters, gradients, learningRate)

# Evaluating the performance
plt.figure()
plt.plot(losses)
plt.xlabel("EPOCHS")
plt.ylabel("Loss value")
plt.show()

# Testing
X = np.array([[1, 1, 0, 0], [0, 1, 0, 1]]) # AND input
cost, _, A2 = forwardPropagation(X, Y, parameters)
prediction = (A2 > 0.5) * 1.0
# print(A2)
print(prediction)

OR Logic Gate with 2-bit Binary Input

# import Python Libraries
import numpy as np
from matplotlib import pyplot as plt

# Sigmoid Function
def sigmoid(z):
return 1 / (1 + np.exp(-z))

# Initialization of the neural network parameters
# Initialized all the weights in the range of between 0 and 1
# Bias values are initialized to 0
def initializeParameters(inputFeatures, neuronsInHiddenLayers, outputFeatures):
W1 = np.random.randn(neuronsInHiddenLayers, inputFeatures)
W2 = np.random.randn(outputFeatures, neuronsInHiddenLayers)
b1 = np.zeros((neuronsInHiddenLayers, 1))
b2 = np.zeros((outputFeatures, 1))
  
parameters = {"W1" : W1, "b1": b1,
"W2" : W2, "b2": b2}
return parameters

# Forward Propagation
def forwardPropagation(X, Y, parameters):
m = X.shape[1]
W1 = parameters["W1"]
W2 = parameters["W2"]
b1 = parameters["b1"]
b2 = parameters["b2"]

Z1 = np.dot(W1, X) + b1
A1 = sigmoid(Z1)
Z2 = np.dot(W2, A1) + b2
A2 = sigmoid(Z2)

cache = (Z1, A1, W1, b1, Z2, A2, W2, b2)
logprobs = np.multiply(np.log(A2), Y) + np.multiply(np.log(1 - A2), (1 - Y))
cost = -np.sum(logprobs) / m
return cost, cache, A2

# Backward Propagation
def backwardPropagation(X, Y, cache):
m = X.shape[1]
(Z1, A1, W1, b1, Z2, A2, W2, b2) = cache
  
dZ2 = A2 - Y
dW2 = np.dot(dZ2, A1.T) / m
db2 = np.sum(dZ2, axis = 1, keepdims = True)
  
dA1 = np.dot(W2.T, dZ2)
dZ1 = np.multiply(dA1, A1 * (1- A1))
dW1 = np.dot(dZ1, X.T) / m
db1 = np.sum(dZ1, axis = 1, keepdims = True) / m
  
gradients = {"dZ2": dZ2, "dW2": dW2, "db2": db2,
"dZ1": dZ1, "dW1": dW1, "db1": db1}
return gradients

# Updating the weights based on the negative gradients
def updateParameters(parameters, gradients, learningRate):
parameters["W1"] = parameters["W1"] - learningRate * gradients["dW1"]
parameters["W2"] = parameters["W2"] - learningRate * gradients["dW2"]
parameters["b1"] = parameters["b1"] - learningRate * gradients["db1"]
parameters["b2"] = parameters["b2"] - learningRate * gradients["db2"]
return parameters

# Model to learn the OR truth table
X = np.array([[0, 0, 1, 1], [0, 1, 0, 1]]) # OR input
Y = np.array([[0, 1, 1, 1]]) # OR output

# Define model parameters
neuronsInHiddenLayers = 2 # number of hidden layer neurons (2)
inputFeatures = X.shape[0] # number of input features (2)
outputFeatures = Y.shape[0] # number of output features (1)
parameters = initializeParameters(inputFeatures, neuronsInHiddenLayers, outputFeatures)
epoch = 100000
learningRate = 0.01
losses = np.zeros((epoch, 1))

for i in range(epoch):
losses[i, 0], cache, A2 = forwardPropagation(X, Y, parameters)
gradients = backwardPropagation(X, Y, cache)
parameters = updateParameters(parameters, gradients, learningRate)

# Evaluating the performance
plt.figure()
plt.plot(losses)
plt.xlabel("EPOCHS")
plt.ylabel("Loss value")
plt.show()

# Testing
X = np.array([[1, 1, 0, 0], [0, 1, 0, 1]]) # OR input
cost, _, A2 = forwardPropagation(X, Y, parameters)
prediction = (A2 > 0.5) * 1.0
# print(A2)
print(prediction)

XNOR Logic Gate with 2-bit Binary Input

# import Python Libraries
import numpy as np
from matplotlib import pyplot as plt

# Sigmoid Function
def sigmoid(z):
return 1 / (1 + np.exp(-z))

# Initialization of the neural network parameters
# Initialized all the weights in the range of between 0 and 1
# Bias values are initialized to 0
def initializeParameters(inputFeatures, neuronsInHiddenLayers, outputFeatures):
W1 = np.random.randn(neuronsInHiddenLayers, inputFeatures)
W2 = np.random.randn(outputFeatures, neuronsInHiddenLayers)
b1 = np.zeros((neuronsInHiddenLayers, 1))
b2 = np.zeros((outputFeatures, 1))
  
parameters = {"W1" : W1, "b1": b1,
"W2" : W2, "b2": b2}
return parameters

# Forward Propagation
def forwardPropagation(X, Y, parameters):
m = X.shape[1]
W1 = parameters["W1"]
W2 = parameters["W2"]
b1 = parameters["b1"]
b2 = parameters["b2"]

Z1 = np.dot(W1, X) + b1
A1 = sigmoid(Z1)
Z2 = np.dot(W2, A1) + b2
A2 = sigmoid(Z2)

cache = (Z1, A1, W1, b1, Z2, A2, W2, b2)
logprobs = np.multiply(np.log(A2), Y) + np.multiply(np.log(1 - A2), (1 - Y))
cost = -np.sum(logprobs) / m
return cost, cache, A2

# Backward Propagation
def backwardPropagation(X, Y, cache):
m = X.shape[1]
(Z1, A1, W1, b1, Z2, A2, W2, b2) = cache
  
dZ2 = A2 - Y
dW2 = np.dot(dZ2, A1.T) / m
db2 = np.sum(dZ2, axis = 1, keepdims = True)
  
dA1 = np.dot(W2.T, dZ2)
dZ1 = np.multiply(dA1, A1 * (1- A1))
dW1 = np.dot(dZ1, X.T) / m
db1 = np.sum(dZ1, axis = 1, keepdims = True) / m
  
gradients = {"dZ2": dZ2, "dW2": dW2, "db2": db2,
"dZ1": dZ1, "dW1": dW1, "db1": db1}
return gradients

# Updating the weights based on the negative gradients
def updateParameters(parameters, gradients, learningRate):
parameters["W1"] = parameters["W1"] - learningRate * gradients["dW1"]
parameters["W2"] = parameters["W2"] - learningRate * gradients["dW2"]
parameters["b1"] = parameters["b1"] - learningRate * gradients["db1"]
parameters["b2"] = parameters["b2"] - learningRate * gradients["db2"]
return parameters

# Model to learn the XNOR truth table
X = np.array([[0, 0, 1, 1], [0, 1, 0, 1]]) # XNOR input
Y = np.array([[1, 0, 0, 1]]) # XNOR output

# Define model parameters
neuronsInHiddenLayers = 2 # number of hidden layer neurons (2)
inputFeatures = X.shape[0] # number of input features (2)
outputFeatures = Y.shape[0] # number of output features (1)
parameters = initializeParameters(inputFeatures, neuronsInHiddenLayers, outputFeatures)
epoch = 100000
learningRate = 0.01
losses = np.zeros((epoch, 1))

for i in range(epoch):
losses[i, 0], cache, A2 = forwardPropagation(X, Y, parameters)
gradients = backwardPropagation(X, Y, cache)
parameters = updateParameters(parameters, gradients, learningRate)

# Evaluating the performance
plt.figure()
plt.plot(losses)
plt.xlabel("EPOCHS")
plt.ylabel("Loss value")
plt.show()

# Testing
X = np.array([[1, 1, 0, 0], [0, 1, 0, 1]]) # XNOR input
cost, _, A2 = forwardPropagation(X, Y, parameters)
prediction = (A2 > 0.5) * 1.0
# print(A2)
print(prediction)

I have tried to explain it in very simple language and I hope that I have answered your question satisfactorily. Leave doubts in the comment section if any.



Related Solutions

Use Python: # Problem Set 01: - Develop neurons and print truth table of the following...
Use Python: # Problem Set 01: - Develop neurons and print truth table of the following 2-input logic gates: AND, OR, NAND, NOR, XOR, XNOR and 1-input NOT gate (Notice: use Markdown to explain how you developed a neuron, and to insert images showing the truth table of logic gates before coding) # Problem Set 02: - Develop neuron and print truth table of XOR gate using only NAND gates - Develop neuron and print truth table of XOR gate...
Neurons: Please construct a Neural Network for the following logic, NAND Truth table for NAND function...
Neurons: Please construct a Neural Network for the following logic, NAND Truth table for NAND function i1 i2 output 0 0 1 0 1 1 1 0 1 1 1 0
What are neurons? How to use them to construct AND, OR, and NOT gates?
What are neurons? How to use them to construct AND, OR, and NOT gates?
Important: please use python. Using while loop, write python code to print the times table (from...
Important: please use python. Using while loop, write python code to print the times table (from 0 to 20, incremented by 2) for number 5. Add asterisks (****) so the output looks exactly as shown below.   Please send the code and the output of the program. ****************************************************************** This Program Shows Times Table for Number 5 (from 0 to 20) Incremented by 2 * ****************************************************************** 0 x 5 = 0 2 x 5 = 10 4 x 5 = 20 6...
write a program that will print a truth table for p ^ ~q. Using C++ please.
write a program that will print a truth table for p ^ ~q. Using C++ please.
Design an 8-bit adder. Show the truth table, logic circuit, and Verilog code.
Design an 8-bit adder. Show the truth table, logic circuit, and Verilog code.
Design an 8-bit adder. Show the truth table, logic circuit, and Verilog code.
Design an 8-bit adder. Show the truth table, logic circuit, and Verilog code.
Python #For question 1 and 2 you may not use ''' ''' Question 1 Print the...
Python #For question 1 and 2 you may not use ''' ''' Question 1 Print the messages below without using variables. Output must be 2 lines identical to below: What is the snake's favorite language? "I love Python", said the snake. Question 2 Write a python statements to match the 5 lines of output below. Use a single print statement to produce the list of 4 languages The 3 most popular programming languages of 2020 are: 1.         Python 2.         Javascript 3.         Java 4.         C#...
In digital logic circuits, what are the maximum number of inputs for the following gates: AND...
In digital logic circuits, what are the maximum number of inputs for the following gates: AND OR NOR XOR(is it 2?) XNOR (is it 2?) NAND
Python Write a program that will analyse the string input and print “accept” or “reject” based...
Python Write a program that will analyse the string input and print “accept” or “reject” based on the pattern given Accept if it fulfils the following conditions -String length 9 -3 small alphabet (3 lowercase letter) -3 digits -3 big alphabet (3 uppercase letters) -1st alphabet should be a capital -Last alphabet should be a number -Two consecutive alphabets can't be small Reject if any of the conditions is absent So i want it to accept or reject my input,...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT