Question

In: Advanced Math

Let p be the prime number (2^20)*(3^7)5 + 1 = 11466178561. Solve for x such that...

Let p be the prime number (2^20)*(3^7)5 + 1 = 11466178561. Solve for x such that 2^x ≡ 2376886429 (mod p) Explain your method carefully.

Solutions

Expert Solution

GIVEN DATA FROM THE PROBLEM

220 * 37 * 5 + 1 = 11466178561

2^x ≡ 2376886429 (mod p)

SOLVING FOR X :

AS WE HAVE

is a prime number so it is odd as   bevause if then the system   has no solution as we have the theorem   has a solution if and only if   divides   .

So    is odd and so is even and so .

Now ,

, as   .

where   .

Hence the required solution of the given congruence are given by ,


Related Solutions

2. (a) Let p be a prime. Determine the number of elements of order p in...
2. (a) Let p be a prime. Determine the number of elements of order p in Zp^2 ⊕ Zp^2 . (b) Determine the number of subgroups of of Zp^2 ⊕ Zp^2 which are isomorphic to Zp^2 .
4) Let ? = {2, 3, 5, 7}, ? = {3, 5, 7}, ? = {1,...
4) Let ? = {2, 3, 5, 7}, ? = {3, 5, 7}, ? = {1, 7}. Answer the following questions, giving reasons for your answers. a) Is ? ⊆ ?? b)Is ? ⊆ ?? c) Is ? ⊂ ?? d) Is ? ⊆ ?? e) Is ? ⊆ ?? 5) Let ? = {1, 3, 4} and ? = {2, 3, 6}. Use set-roster notation to write each of the following sets, and indicate the number of elements in...
11.4 Let p be a prime. Let S = ℤ/p - {0} = {[1]p, [2]p, ....
11.4 Let p be a prime. Let S = ℤ/p - {0} = {[1]p, [2]p, . . . , [p-1]p}. Prove that for y ≠ 0, Ly restricts to a bijective map Ly|s : S → S. 11.5 Prove Fermat's Little Theorem
1. (a) Let p be a prime. Prove that in (Z/pZ)[x], xp−x= x(x−1)(x−2)···(x−(p−1)). (b) Use your...
1. (a) Let p be a prime. Prove that in (Z/pZ)[x], xp−x= x(x−1)(x−2)···(x−(p−1)). (b) Use your answer to part (a) to prove that for any prime p, (p−1)!≡−1 (modp).
Maria says that 4 2/3 x 7 1/5 = 4 x 7 + 2/3 x 1/5....
Maria says that 4 2/3 x 7 1/5 = 4 x 7 + 2/3 x 1/5. Explain why Maria has made a good attempt, but her answer is not correct. Explain how to work with what Maria has already written and modify it to get the correct answer. In other words, don’t just start from scratch and show Maria how to do the problem, but rather take what she has already written, use it, and make it mathematically correct. Which...
Let X and Y have joint discrete distribution p(x, y) = 3 20 (.5 x )...
Let X and Y have joint discrete distribution p(x, y) = 3 20 (.5 x ) (.7 y ), x = 0, 1, 2, . . . , and y = 0, 1, 2, . . .. Find the marginal probability function P(X = x). [hint: for a geometric series X∞ n=0 arn with −1 < r < 1, r 6= 0, then X∞ n=0 arn = a 1 − r ]
For p = 5 , find a number x such that x^2 is congurent to -1...
For p = 5 , find a number x such that x^2 is congurent to -1 mod p. here x is denoted by sqrt(-1). Determine if sqrt(-1) exists mod p for p = 7, 11, 13 , 17, 23, 29.
1) Let P(x) = 3x(x − 1)3 (3x + 4)2 . List the zeros of P...
1) Let P(x) = 3x(x − 1)3 (3x + 4)2 . List the zeros of P and their corresponding multiplicities. 2) Let f(x) = −18(x + 3)2 (x − 2)3 (x + 71)5 . Describe the end behavior of f by filling in the blank below. As x → −∞, f(x) → . As x → ∞, f(x) → . 3) The polynomial of degree 4, P(x) has a root of multiplicity 2 at x = 3 and roots of...
Let X = {1, 2, 3, 4, 5, 6} and let ∼ be given by {(1,...
Let X = {1, 2, 3, 4, 5, 6} and let ∼ be given by {(1, 1),(2, 2),(3, 3),(4, 4),(5, 5),(6, 6),(1, 3),(1, 5),(2, 4),(3, 1),(3, 5), (4, 2),(5, 1),(5, 3)}. Is ∼ an equivalence relation? If yes, write down X/ ∼ .
Given n ∈N and p prime number and consider the polynomial f (x) = xn (xn-2)+1-p...
Given n ∈N and p prime number and consider the polynomial f (x) = xn (xn-2)+1-p 1)Prove that f (x) is irreducible in Q [x] 2) If n = 1 and p = 3, find Q [x] / f (x)) 3) Show that indeed Q [x] / (f (x)) is a field in the previous paragraph PLEASE answer all subsections
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT