Question

In: Physics

Blocks A (mass 4.00 kg ) and B (mass 7.00 kg ) move on a frictionless,...

Blocks A (mass 4.00 kg ) and B (mass 7.00 kg ) move on a frictionless, horizontal surface. Initially, block B is at rest and block A is moving toward it at 4.00 m/s . The blocks are equipped with ideal spring bumpers. The collision is head-on, so all motion before and after the collision is along a straight line. Let +x be the direction of the initial motion of block A.

Find the maximum energy stored in the spring bumpers?

Find the velocity of block A when the energy stored in the spring bumpers is maximum?

Find the velocity of block B when the energy stored in the spring bumpers is maximum?

Find the velocity of block A after they have moved apart?

Find the velocity of B after they have moved apart?

Solutions

Expert Solution

Given that :

mass of block A, mA = 4 kg

mass of block B, mB = 7 kg

initial velocity of block A, v0,A = 4 m/s

initial velocity of block B, v0,B = 0 m/s

(a) The maximum energy stored in the spring bumpers which is given as :

using conservation of energy, we have

K.E = P.Espring

(1/2) mA vA2 + (1/2) mB vB2 = P.Espring

P.Espring = (1/2) mA vA2                                                       { eq.1 }

inserting the values in above eq.

P.Espring = (0.5) (4 kg) (4 m/s)2

P.Espring = 32 J

(b) The velocity of block A when the energy stored in the spring bumpers is maximum which is given as :

using an equation,   vA = v0,A (mA – mB)/ (mB + mA)                                           { eq.2 }

inserting the values in eq.2,

vA = (4 m/s) [(4 kg) - (7 kg)] / [(7 kg) + (4 kg)]

vA = - (12 kg.m/s) / (11 kg)

vA = -1.09 m/s

(b) The velocity of block B when the energy stored in the spring bumpers is maximum which is given as :

using an equation,      vB = (v0,A + vA)                                                         { eq.3 }

inserting the values in eq.3,

vB = [(4 m/s) + (-1.09 m/s)]

vB = 2.91 m/s


Related Solutions

Blocks A (mass 4.00 kg ) and B (mass 6.00 kg ) move on a frictionless,...
Blocks A (mass 4.00 kg ) and B (mass 6.00 kg ) move on a frictionless, horizontal surface. Initially, block B is at rest and block A is moving toward it at 5.00 m/s . The blocks are equipped with ideal spring bumpers. The collision is head-on, so all motion before and after the collision is along a straight line. Let +x be the direction of the initial motion of block A. Find the maximum energy stored in the spring...
Blocks A (mass 5.00 kg ) and B (mass 9.00 kg ) move on a frictionless,...
Blocks A (mass 5.00 kg ) and B (mass 9.00 kg ) move on a frictionless, horizontal surface. Initially, block B is at rest and block A is moving toward it at 2.00 m/s . The blocks are equipped with ideal spring bumpers. The collision is head-on, so all motion before and after the collision is along a straight line. Let +x be the direction of the initial motion of block A. a.) Find the maximum energy stored In the...
Blocks A (mass 3.00 kg) and B (mass 12.00 kg, to the right of A) move...
Blocks A (mass 3.00 kg) and B (mass 12.00 kg, to the right of A) move on a frictionless, horizontal surface. Initially, block B is moving to the left at 0.500 m/s and block A is moving to the right at 2.00 m/s. The blocks are equipped with ideal spring bumpers. The collision is head on, so all motion before and after it is along a straight line. Let +x be the direction of the initial motion of A. Find...
Boxes A 7.00 kg and B 15.00 kg , to the right of A move on...
Boxes A 7.00 kg and B 15.00 kg , to the right of A move on a frictionless, horizontal surface. Box B is traveling to the left at 0.500 m/s, and box A is traveling to the right at 2.00 m/s initially. The boxes are attached with ideal spring bumpers. Eventually, they have head-on collision. consider that all motion before and after it is along a horizontal axis. Assume that +x is the direction of the initial motion of A....
A frictionless cart of mass ? = 4.00 kg has a shape of a ramp with...
A frictionless cart of mass ? = 4.00 kg has a shape of a ramp with an incline angle ? = 60.0°. The ramp is pulled by a constant horizontal force ? = 15.0 N. Another frictionless cart of mass? = 2.00 kg can roll along the ramp and is attached to the top of the ramp at point ? by a spring of constant ? = 300. N/m. The spring is free to pivot without friction around point ?....
Blocks A (mass 2.00 kg ) and B (mass 12.00 kg , to the right of...
Blocks A (mass 2.00 kg ) and B (mass 12.00 kg , to the right of A) move on a frictionless, horizontal surface. Initially, block B is moving to the left at 0.500 m/s and block A is moving to the right at 2.00 m/s. The blocks are equipped with ideal spring bumpers. The collision is headon, so all motion before and after it is along a straight line. Let +x be the direction of the initial motion of A....
Three identical blocks, A, B, and C, are on a horizontal frictionless table. The blocks are...
Three identical blocks, A, B, and C, are on a horizontal frictionless table. The blocks are connected by strings of negligible mass, with block B between the other two blocks. If block C is pulled horizontally by a force of magnitude F = 49 N, find the tension in the string between blocks B and C.
Three blocks of unknown mass m1, m2=2.0 kg, and m3 = 3.0 kg are on a frictionless horizontal surface as shown on the figure below.
Three blocks of unknown mass m1, m2=2.0 kg, and m3 = 3.0 kg are on a frictionless horizontal surface as shown on the figure below. The blocks are connected by ideal, massless strings. A force FL=11 N is applied to the left block and is directed to the left. A force FR=33 N is applied to the right block, and is directed to the right. The tension T12 in the string between m1 and m2 is 13 N and the...
1. A 7.00 kg sled is initially at rest on a frictionless horizontal road. The sled...
1. A 7.00 kg sled is initially at rest on a frictionless horizontal road. The sled is pulled a distance of 2.40 m by a force of 18.0 N applied to the sled at an angle of 24° to the horizontal. Find the change in the kinetic energy of the sled. 2. A 0.24-kg stone is thrown vertically upward with an initial velocity of 7.10m/s from a height 1.30 m above the ground. What is the potential energy of the...
Two satellites, A and B, both of mass m = 115 kg, move in the same...
Two satellites, A and B, both of mass m = 115 kg, move in the same circular orbit of radius r = 7.57 106 m around Earth but in opposite senses of rotation and therefore on a collision course. a) What is the total mechanical energy EA + EB of the two satellites + Earth system before the collision? b)If the collision is completely inelastic so that the wreckage remains as one piece of tangled material (mass = 2m), what...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT