In: Accounting
An analyst gathers the following return data for two assets and constructs the follow table, R1 is the return of Asset 1 and R1 is the mean of the return for Asset 1, R2 is the return of Asset 2 and R2 is the mean of the return for Asset 2.
Asset 1 |
Asset 2 |
||||||
Period |
R1 (%) |
R2 (%) |
R1 - R1 |
(R1 - R1)2 |
R2 - R2 |
(R2 - R2)2 |
(R1 -R1)(R2 - R2) |
T1 |
7.00 |
16.00 |
-3.00 |
9.00 |
6.00 |
36.00 |
-18.00 |
T2 |
13.00 |
4.00 |
3.00 |
9.00 |
-6.00 |
36.00 |
-18.00 |
T3 |
10.00 |
10.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
SUM |
30.00 |
30.00 |
18.00 |
72.00 |
-36.00 |
||
(SUM / N), where N=3 |
10.00 |
10.00 |
6.00 |
24.00 |
-12.00 |
||
SUM / (N-1), where N = 3 |
9.00 |
36.00 |
-18.00 |
Based on the information above: the sample standard deviation for the returns of Asset 2 is closest to:
If the investor forms a portfolio comprised of only the two assets with 30% invested in Asset 1, then the correlation of the returns between Asset 1 and Asset 2 is closest to:
If the investor forms a portfolio comprised of only the two assets with 30% invested in Asset 1, then the portfolio's standard deviation of the returns is closest to:
Asset 1 | Asset 2 | Asset 1 | Asset 1 | Asset 2 | Asset 2 | ||
Period | R1 (%) | R2 (%) | R1 - R1 | (R1 - R1)2 | R2 - R2 | (R2 - R2)2 | (R1 -R1)(R2 - R2) |
T1 | 7 | 16 | -3 | 9 | 6 | 36 | -18 |
T2 | 13 | 4 | 3 | 9 | -6 | 36 | -18 |
T3 | 10 | 10 | 0 | 0 | 0 | 0 | 0 |
SUM | 30 | 30 | 18 | 72 | -36 | ||
n | 3 | 3 | 3 | 3 | 3 | ||
(Sum / n) | 10 | 10 | 6 | 24 | -12 | ||
1 | Standard Deviation for Asset 2 | SUM(R2 - R2)2 | |||||
n | |||||||
72 | |||||||
3 | |||||||
24 | |||||||
2 | Correlation of the returns between Asset 1 and Asset 2 | ||||||
where investment in Asset 1 is 30% | |||||||
Standard Deviation for Asset 1 | 6 | ||||||
Standard Deviation for Asset 2 | 24 | ||||||
Covariance (Asset 1 Asset 2) | Sum((R1 -R1)(R2 - R2)) | ||||||
n | |||||||
-36 | |||||||
3 | |||||||
-12 | |||||||
Correlation (Asset 1 Asset 2) | Covariance (Asset 1 Asset 2) | ||||||
S.D1 * S.D2 | |||||||
-12 | |||||||
6*24 | |||||||
-12 | |||||||
144 | |||||||
-0.083 | |||||||
3 | Portfolio's standard deviation | 16.74 |