Question

In: Accounting

Find the monthly payment in year 2 for the following ARM: First year rate = 5.4%;...

Find the monthly payment in year 2 for the following ARM: First year rate = 5.4%; 2% annual cap, 6% overall cap; 30-year amortization; margin = 3.0%; Treasury index at end of year 1 = 4.2%; loan amount = $164,000.

Solutions

Expert Solution

First year monthly payment:

Monthly payment = [P × R × (1+R)^N ] / [(1+R)^N -1]
Using the formula:
Loan amount P $                                                          164,000
Rate of interest per period:
Annual rate of interest 5.400%
Frequency of payment = Once in 1 month period
Numer of payments in a year = 12/1 = 12
Rate of interest per period R 0.054 /12 = 0.4500%
Total number of payments:
Frequency of payment = Once in 1 month period
Number of years of loan repayment =                                                                        30
Total number of payments N 30 × 12 = 360
Period payment using the formula = [ 164000 × 0.0045 × (1+0.0045)^360] / [(1+0.0045 ^360 -1]
Monthly payment = $                                                            920.91

Balance after 12 payments:

Loan balance = PV * (1+r)^n - P[(1+r)^n-1]/r
Loan amount PV = 164,000.00
Rate of interest r= 0.4500%
nth payment n= 12
Payment P= 920.91
Loan balance = 164000*(1+0.0045)^12 - 920.91*[(1+0.0045)^12-1]/0.0045
Loan balance =                                                                         161,749.93

Second year:

Interest rate = 4.2% + 3% = 7.2% (is within annual 2% cap)

remaining life 29 years.

Monthly payment is:

Monthly payment = [P × R × (1+R)^N ] / [(1+R)^N -1]
Using the formula:
Loan amount P $                                                          161,750
Rate of interest per period:
Annual rate of interest 7.200%
Frequency of payment = Once in 1 month period
Numer of payments in a year = 12/1 = 12
Rate of interest per period R 0.072 /12 = 0.6000%
Total number of payments:
Frequency of payment = Once in 1 month period
Number of years of loan repayment =                                                                        29
Total number of payments N 29 × 12 = 348
Period payment using the formula = [ 161749.93 × 0.006 × (1+0.006)^348] / [(1+0.006 ^348 -1]
Monthly payment = $                                                         1,108.78

Monthly payment for second year is $1,108.78

please rate.


Related Solutions

A family has a $ 113,739 25​-year mortgage at 5.4 % compounded monthly. ​(A) Find the...
A family has a $ 113,739 25​-year mortgage at 5.4 % compounded monthly. ​(A) Find the monthly payment and the total interest paid. ​(B) Suppose the family decides to add an extra​ $100 to its mortgage payment each month starting with the very first payment. How long will it take the family to pay off the​ mortgage? How much interest will the family​ save? ​(A) Monthly​ payment: ​$ nothing ​(Round to two decimal​ places.)
Find the monthly PITI payment for a mortgage of $93,500 at a rate of 9.25% for...
Find the monthly PITI payment for a mortgage of $93,500 at a rate of 9.25% for 25 years with annual property taxes and hazard insurance premium of $3,750 and $687 respectively.
Assuming a 5/1 ARM, calculate the monthly mortgage payment on a 30 year $200,000 mortgage with...
Assuming a 5/1 ARM, calculate the monthly mortgage payment on a 30 year $200,000 mortgage with an initial rate of 2.75%, a rate of 4% at the time of the first adjustment, a rate of 5% at second adjustment and a rate of 4% at the third adjustment.
Find the monthly payment for a 25-year fixed-rate loan of $200,000 at 5% annual interest.
Find the monthly payment for a 25-year fixed-rate loan of $200,000 at 5% annual interest.
The monthly payment on a loan may be calculated by the following formula: Payment =    Rate *...
The monthly payment on a loan may be calculated by the following formula: Payment =    Rate * (1 + Rate)N ((1 + Rate)N -1) Rate is the monthly interest rate, which is the annual interest rate divided by 12. (12 percent annual interest would be 1 percent monthly interest.) N is the number of payments, and L is the amount of the loan. Write a program that asks for these (Input) values then displays a report similar to: Loan Amount:            $...
2. A 5-year annuity of $350 monthly payments begins in 10 years (the first payment is...
2. A 5-year annuity of $350 monthly payments begins in 10 years (the first payment is at the end of the first month of year 10, so it's an ordinary annuity). The appropriate discount rate is 12%, compounded monthly. What is the value of the annuity today?
On a 30-year, fixed-rate loan with a monthly payment of $1,000 and an interest rate of...
On a 30-year, fixed-rate loan with a monthly payment of $1,000 and an interest rate of 9%, what is the outstanding balance due on the loan with after the borrower has made 18 years of payments?
Consider a 30-year mortgage with an interest rate of 10% compounded monthly and a monthly payment...
Consider a 30-year mortgage with an interest rate of 10% compounded monthly and a monthly payment of $850. (1) Calculate the principal. (2) How much of the principal is paid the first, 5th, 20th and last year? (3) How much interest is paid the first, 5th, 20th and last year year? (4) What is the total amount of money paid during the 30 years? (5) What is the total amount of interest paid during the 30 years? (6) What is...
Consider a 30-year mortgage with an interest rate of 10% compounded monthly and a monthly payment...
Consider a 30-year mortgage with an interest rate of 10% compounded monthly and a monthly payment of $850. (5) What is the total amount of interest paid during the 30 years? (6) What is the unpaid balance after 25 years? (7) How much has to be deposited into a savings account with an interest rate of 4% compounded quarterly in order to pay the unpaid balance of the mortgage after 25 years? (8) How much has to be deposited each...
A fifteen-year annuity-immediate has monthly payments. The first payment is $300 and the monthly increase is...
A fifteen-year annuity-immediate has monthly payments. The first payment is $300 and the monthly increase is $50. Calculate the accumulated value of the annuity if the annual effective interest rate is 4%. pls show work and formula, thanks!
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT