In: Economics
one.xls:
(QdB) | (PB) | (AD) | (I) |
3750 | 3.00 | 4000 | 5850 |
3750 | 3.00 | 4200 | 5900 |
4000 | 2.75 | 4400 | 5950 |
4500 | 2.25 | 4800 | 5900 |
3750 | 3.00 | 3800 | 5950 |
3000 | 3.25 | 3000 | 5900 |
4250 | 2.25 | 4000 | 6000 |
4250 | 2.50 | 4600 | 6100 |
4250 | 2.50 | 3800 | 6150 |
4000 | 2.75 | 3600 | 6150 |
4500 | 2.25 | 4400 | 6200 |
5000 | 2.00 | 4600 | 6250 |
I. Students are expected to view the video, read and understand Units 2 & 4 before attempting this exercise.
Consider the data provided in your one.xls provided in your diskette. This worksheet contains data regarding the market for Beer. Information on Quantity demanded (Q), Price of the product (P), total Advertisement expenditure (AD) and the per-capita income (I) in the market are provided for 12 months. Answer the following questions by performing the necessary operations in EXCEL:
1. Perform 3 simple linear regressions indicated below:
a. Qd = a - b P. Is P a significant variable ? Interpret the R-squared value.
Calculated t:
Table value of t:
Reject Null ?
Interpret R-squared here:
b. Qd = a + b AD. Is AD a significant variable ? Interpret the R-squared value.
Calculated t:
Table value of t:
Reject Null ?
Interpret R-squared here:
c. Qd = a + b I. Is I a significant variable ? Interpret the R-squared value.
Calculated t:
Table value of t:
Reject Null ?
Interpret R-squared here:
4. A multi-variate linear demand equation is given below.
Q = a - b P + c AD + d I
For the given data, estimate the multiple regression provided above. Explicitly state the equation estimated in the space below:
5. Interpret the R-squared for this problem. Is this number bigger or smaller than those generated in the previous single variable regressions in (i.), (ii.), (iii.). Why ?
6.Calculate the mean of all these variables. Predict Q at these mean values. Build a 95% confidence around this prediction.
7.From the results of your multiple regression above, calculate at the mean values, for the commodity in question the following:
a. the own-price elasticity of demand. Is demand elastic ?
b. the income elasticity of demand. Is the commodity a normal good ?
c. the advertising elasticity. What will happen to demand if AD increases 5% from its mean value ?
8. Which of the variables are significant in this regression ? Test at 95%.
Indicate the calculated t values for each variable and tell me if that variable is significant:
Calculated t Reject Null (yes or no)
P
AD
I
9. Economic theory tells us that Qd and P are inversely related. How will you statistically test the validity of this theory ?
Think of a one-tail test.
1.
a.
(QdB) | (PB) | (AD) | (I) | |||||
3750 | 3 | 4000 | 5850 | |||||
3750 | 3 | 4200 | 5900 | |||||
4000 | 2.75 | 4400 | 5950 | |||||
4500 | 2.25 | 4800 | 5900 | |||||
3750 | 3 | 3800 | 5950 | |||||
3000 | 3.25 | 3000 | 5900 | |||||
4250 | 2.25 | 4000 | 6000 | |||||
4250 | 2.5 | 4600 | 6100 | |||||
4250 | 2.5 | 3800 | 6150 | |||||
4000 | 2.75 | 3600 | 6150 | |||||
4500 | 2.5 | 4400 | 6200 | |||||
5000 | 2 | 4600 | 6250 | |||||
SUMMARY OUTPUT | ||||||||
Regression Statistics | ||||||||
Multiple R | 0.939225 | |||||||
R Square | 0.882144 | |||||||
Adjusted R Square | 0.870359 | |||||||
Standard Error | 181.3873 | |||||||
Observations | 12 | |||||||
ANOVA | ||||||||
df | SS | MS | F | Significance F | ||||
Regression | 1 | 2462653 | 2462653 | 74.84964 | 5.8932E-06 | |||
Residual | 10 | 329013.4 | 32901.34 | |||||
Total | 11 | 2791667 | ||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
Intercept | 7410.535 | 388.1262 | 19.09311 | 0.00000000 | 6545.73616 | 8275.334 | 6545.736 | 8275.334 |
(PB) | -1257.53 | 145.3523 | -8.65157 | 0.00000589 | -1581.39011 | -933.66 | -1581.39 | -933.66 |
RESIDUAL OUTPUT | ||||||||
Observation | Predicted (QdB) | Residuals | ||||||
1 | 3637.96 | 112.0401 | ||||||
2 | 3637.96 | 112.0401 | ||||||
3 | 3952.341 | 47.65886 | ||||||
4 | 4581.104 | -81.1037 | ||||||
5 | 3637.96 | 112.0401 | ||||||
6 | 3323.579 | -323.579 | ||||||
7 | 4581.104 | -331.104 | ||||||
8 | 4266.722 | -16.7224 | ||||||
9 | 4266.722 | -16.7224 | ||||||
10 | 3952.341 | 47.65886 | ||||||
11 | 4266.722 | 233.2776 | ||||||
12 | 4895.485 | 104.5151 |
Qd = a - b P.
Qd = 7410.53 - 1257.53 P
Yes, P is a significant variable
R-squared = 0.88
t-value:
t Stat | |||
Intercept | 19.09311 | ||
(PB) | -8.65157 |
Reject Null - Yes
Interpret R-squared -
R-squared is a statistical measure of how close the data are to the fitted regression line. It is the percentage of the response variable variation that is explained by a linear model. R-squared = Explained variation / Total variation
Here, 88% of data is explained by all the variability of the response data around its mean. Hence, fit is good.
b.
SUMMARY OUTPUT | ||||||||
Regression Statistics | ||||||||
Multiple R | 0.781325 | |||||||
R Square | 0.610469 | |||||||
Adjusted R Square | 0.571516 | |||||||
Standard Error | 329.7638 | |||||||
Observations | 12 | |||||||
ANOVA | ||||||||
df | SS | MS | F | Significance F | ||||
Regression | 1 | 1704225 | 1704225 | 15.671883 | 0.00269178 | |||
Residual | 10 | 1087441 | 108744.1 | |||||
Total | 11 | 2791667 | ||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
Intercept | 907.277 | 807.9109 | 1.122991 | 0.2876786 | -892.86071 | 2707.415 | -892.861 | 2707.415 |
(AD) | 0.774648 | 0.195679 | 3.958773 | 0.0026918 | 0.33864838 | 1.210647 | 0.338648 | 1.210647 |
RESIDUAL OUTPUT | ||||||||
Observation | Predicted (QdB) | Residuals | ||||||
1 | 4005.869 | -255.869 | ||||||
2 | 4160.798 | -410.798 | ||||||
3 | 4315.728 | -315.728 | ||||||
4 | 4625.587 | -125.587 | ||||||
5 | 3850.939 | -100.939 | ||||||
6 | 3231.221 | -231.221 | ||||||
7 | 4005.869 | 244.1315 | ||||||
8 | 4470.657 | -220.657 | ||||||
9 | 3850.939 | 399.061 | ||||||
10 | 3696.009 | 303.9906 | ||||||
11 | 4315.728 | 184.2723 | ||||||
12 | 4470.657 | 529.3427 |
Qd = a + b AD.
Qd = 907 + 0.77 AD
Yes, P is a significant variable
R-squared = 0.61
t-value:
t Stat | |||||
Intercept |
|
||||
(AD) |
Reject Null - Yes
Interpret R-squared -
R-squared is a statistical measure of how close the data are to the fitted regression line. It is the percentage of the response variable variation that is explained by a linear model. R-squared = Explained variation / Total variation
Here, 61% of data is explained by all the variability of the response data around its mean. Hence, fit is moderate.
c.
SUMMARY OUTPUT | ||||||||
Regression Statistics | ||||||||
Multiple R | 0.673369 | |||||||
R Square | 0.453426 | |||||||
Adjusted R Square | 0.398768 | |||||||
Standard Error | 390.6217 | |||||||
Observations | 12 | |||||||
ANOVA | ||||||||
df | SS | MS | F | Significance F | ||||
Regression | 1 | 1265813 | 1265813 | 8.2957723 | 0.01637884 | |||
Residual | 10 | 1525853 | 152585.3 | |||||
Total | 11 | 2791667 | ||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
Intercept | -10797.7 | 5167.825 | -2.08941 | 0.0631919 | -22312.3229 | 716.9414 | -22312.3 | 716.9414 |
(I) | 2.46988 | 0.857526 | 2.880238 | 0.0163788 | 0.55919227 | 4.380567 | 0.559192 | 4.380567 |
RESIDUAL OUTPUT | ||||||||
Observation | Predicted (QdB) | Residuals | ||||||
1 | 3651.104 | 98.89558 | ||||||
2 | 3774.598 | -24.5984 | ||||||
3 | 3898.092 | 101.9076 | ||||||
4 | 3774.598 | 725.4016 | ||||||
5 | 3898.092 | -148.092 | ||||||
6 | 3774.598 | -774.598 | ||||||
7 | 4021.586 | 228.4137 | ||||||
8 | 4268.574 | -18.5743 | ||||||
9 | 4392.068 | -142.068 | ||||||
10 | 4392.068 | -392.068 | ||||||
11 | 4515.562 | -15.5622 | ||||||
12 | 4639.056 | 360.9438 |
Qd = a + b I.
Qd = -10798 + 2.47 I
yes, P is significant variable at 95% but not at 1%
R-squared = 0.45
t-value:
t Stat | ||||||
Intercept |
|
|||||
(I) |
Reject Null - Yes at 95% CI
Interpret R-squared -
R-squared is a statistical measure of how close the data are to the fitted regression line. It is the percentage of the response variable variation that is explained by a linear model. R-squared = Explained variation / Total variation
Here, 45% of data is explained by all the variability of the response data around its mean. Hence, fit is not so good.
4.
SUMMARY OUTPUT | ||||||||
Regression Statistics | ||||||||
Multiple R | 0.983037 | |||||||
R Square | 0.966361 | |||||||
Adjusted R Square | 0.953746 | |||||||
Standard Error | 108.3448 | |||||||
Observations | 12 | |||||||
ANOVA | ||||||||
df | SS | MS | F | Significance F | ||||
Regression | 3 | 2697758 | 899252.6 | 76.606462 | 3.1085E-06 | |||
Residual | 8 | 93908.8 | 11738.6 | |||||
Total | 11 | 2791667 | ||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
Intercept | -1912.71 | 2390.959 | -0.79998 | 0.4468266 | -7426.27024 | 3600.852 | -7426.27 | 3600.852 |
(PB) | -687.623 | 154.376 | -4.45421 | 0.0021274 | -1043.61505 | -331.632 | -1043.62 | -331.632 |
(AD) | 0.37076 | 0.09309 | 3.982798 | 0.0040458 | 0.15609349 | 0.585427 | 0.156093 | 0.585427 |
(I) | 1.044857 | 0.318012 | 3.285587 | 0.0110949 | 0.31151927 | 1.778194 | 0.311519 | 1.778194 |
RESIDUAL OUTPUT | ||||||||
Observation | Predicted (QdB) | Residuals | ||||||
1 | 3619.874 | 130.1259 | ||||||
2 | 3746.269 | 3.731028 | ||||||
3 | 4044.57 | -44.5697 | ||||||
4 | 4484.443 | 15.55721 | ||||||
5 | 3650.208 | 99.79235 | ||||||
6 | 3129.451 | -129.451 | ||||||
7 | 4292.32 | -42.3202 | ||||||
8 | 4447.356 | -197.356 | ||||||
9 | 4202.991 | 47.00927 | ||||||
10 | 3956.933 | 43.06721 | ||||||
11 | 4477.69 | 22.3102 | ||||||
12 | 4947.896 | 52.10356 |
Q = -1913 - 688 P + 0.37 AD + 1.04 I
Note: max. 4 questions at a time