In: Finance
Probability | rM | rJ |
0.3 | 16% | 22% |
0.4 | 10 | 3 |
0.3 | 17 | 13 |
Probability | rM | rJ |
0.3 | 16% | 22% |
0.4 | 10 | 3 |
0.3 | 17 | 13 |
Expected Return:
It is simple arithmatical average of returns generated over
period of time.
Avg Ret = Sum [ Prob * ret ]
Scenario | Prob | Ret | Prob * Ret |
1 | 0.3000 | 0.2200 | 0.0660 |
2 | 0.4000 | 0.0300 | 0.0120 |
3 | 0.3000 | 0.1300 | 0.0390 |
Expected Ret | 0.1170 |
SD:
Standard deviation is a measure of amount of variation or
dispersion of set of values. It spcifies the risk of set of
values.
SD = SQRT [ SUm [ Prob * (X-AVgX)^2 ] ]
SD of Market:
State | Prob | Ret (X) | (X-AvgX) | (X-AvgX)^2 | Prob * (X-Avg X)^2 |
1 | 0.3000 | 0.1600 | 0.0210 | 0.000441 | 0.00013 |
2 | 0.4000 | 0.1000 | (0.0390) | 0.001521 | 0.00061 |
3 | 0.3000 | 0.1700 | 0.0310 | 0.000961 | 0.00029 |
Sum[ Prob * ( X-AvgX)^2 ) ] | 0.00103 | ||||
SD = SQRT [ [ Sum[ Prob * ( X-AvgX)^2 ) ] ] ] | 0.03208 |
SD of Market is 3.21%
SD of STock J:
State | Prob | Ret (X) | (X-AvgX) | (X-AvgX)^2 | Prob * (X-Avg X)^2 |
1 | 0.3000 | 0.2200 | 0.1030 | 0.010609 | 0.00318 |
2 | 0.4000 | 0.0300 | (0.0870) | 0.007569 | 0.00303 |
3 | 0.3000 | 0.1300 | 0.0130 | 0.000169 | 0.00005 |
Sum[ Prob * ( X-AvgX)^2 ) ] | 0.00626 | ||||
SD = SQRT [ [ Sum[ Prob * ( X-AvgX)^2 ) ] ] ] | 0.07913 |
SD of STock J is 7.91%