In: Statistics and Probability
Spam is of concern to anyone with an e-mail address. Several companies offer protection by eliminating spam e-mails as soon as they hit an inbox. To examine one such product, a manager randomly sampled his daily emails for 50 days after installing spam software. A total of 374 e-mails were received, of which 15 were spam. Is there evidence that the proportion of spam getting through is greater than 2%? α = 0.10 a. State your hypotheses. b. Which hypothesis test should you use? c. State your rejection rule (use the p-value approach). d. Show how the test statistic was calculated (write down the formula and plug in the numbers). e. What is the p-value? f. State your conclusion.
Ho :   p =    0.02  
           
   
H1 :   p >   0.02  
    (Right tail test)      
   
          
           
   
Level of Significance,   α =   
0.10          
       
Number of Items of Interest,   x =  
15          
       
Sample Size,   n =    374  
           
   
          
           
   
Sample Proportion ,    p̂ = x/n =   
0.0401          
       
          
           
   
Standard Error ,    SE = √( p(1-p)/n ) =   
0.0072          
       
Z Test Statistic = ( p̂-p)/SE = (   0.0401  
-   0.02   ) /   0.0072  
=   2.7775
          
           
   
          
           
   
p-Value   =   0.0027 [Excel function
=NORMSDIST(-z)      
Decision:   p-value<α , reject null hypothesis
         
           
There is enough evidence to say taht  proportion of spam
getting through is greater than 2%
.................
THANKS
revert back for doubt
please upvote