Question

In: Physics

A satellite moves in a circular earth orbit that has a radius of 7.49 x 106...

A satellite moves in a circular earth orbit that has a radius of 7.49 x 106 m. A model airplane is flying on a 24.1-m guideline in a horizontal circle. The guideline is nearly parallel to the ground. Find the speed of the plane such that the plane and the satellite have the same centripetal acceleration.

Solutions

Expert Solution

If M is the mass of earth and m the mass of satellite the gravitational force at the satellite altitude H is

, assuming R is measured from the center of the Earth

By writing also we observe that the gravitational acceleration at altitude R is

which need to be equal to the satellite centripetal acceleration.

For the aircraft that is moving in a horizontal circle of radius r just above the earth, the centripetal acceleration is

Both accelerations are equal means that

The numerical values are

R=7.49.106m

Therefore

V=√(6.67×10-11×5.97×1024×24.1)/(7.49×106)2)

The speed of the plane need to be 13.07 m/s to have the same centripetal acceleration as the satellite has.

Please give your feedback it counts a lot and sorry for any mistake


Related Solutions

A satellite in a circular orbit around the earth with a radius 1.011 times the mean...
A satellite in a circular orbit around the earth with a radius 1.011 times the mean radius of the earth is hit by an incoming meteorite. A large fragment (m = 81.0 kg) is ejected in the backwards direction so that it is stationary with respect to the earth and falls directly to the ground. Its speed just before it hits the ground is 361.0 m/s. Find the total work done by gravity on the satellite fragment. RE 6.37·103 km;...
1. A certain satellite travels in an approximately circular orbit of radius 7.5 × 106 m...
1. A certain satellite travels in an approximately circular orbit of radius 7.5 × 106 m with a period of 6 h 27 min. Calculate the mass of its planet from this information 2. (a) At what height above Earth's surface is the energy required to lift a satellite to that height equal to the kinetic energy required for the satellite to be in orbit at that height? (b) For greater heights, which is greater, the energy for lifting or...
1.Consider a satellite of the earth in a circular orbit of radius R. Let M and...
1.Consider a satellite of the earth in a circular orbit of radius R. Let M and m be the mass of the earth and that of the satellite, respectively. Show that the centripetal acceleration of the satellite is aR = -(v^2/R)*(r/r) where v = |v| is the magnitude of the velocity V and r/r is a unit vector in the radial direction. 2.Using Newton's second low of motion and the law of universal gravitation, determine the speed v=|V| and the...
An Earth satellite moves in a circular orbit 924 km above Earth's surface with a period...
An Earth satellite moves in a circular orbit 924 km above Earth's surface with a period of 103.3 min. What are (a) the speed and (b) the magnitude of the centripetal acceleration of the satellite?
A 150-kg satellite is in circular orbit of radius 7.3 Mm around Earth. Determine:(a) potential, kinetic,...
A 150-kg satellite is in circular orbit of radius 7.3 Mm around Earth. Determine:(a) potential, kinetic, and total mechanical energies.(b) the orbital speed.(c) the escape velocity from this altitude.
A satellite is placed in an elongated elliptical (not circular) orbit around the Earth. At the...
A satellite is placed in an elongated elliptical (not circular) orbit around the Earth. At the point in its orbit where it is closest to the Earth, it is a distance of 1.00 × 10^6 m from the surface (not the center) of the Earth, and is moving at a velocity of 5.14 km/s. At the point in its orbit when it is furthest from the Earth it is a distance of 2.00×10^6 m from the surface of the Earth....
Two satellites are in circular orbits around the earth. The orbit for satellite A is at...
Two satellites are in circular orbits around the earth. The orbit for satellite A is at a height of 555 km above the earth’s surface, while that for satellite B is at a height of 778 km. Find the orbital speed for (a) satellite A and (b) satellite B.
Two satellites are in circular orbits around the earth. The orbit for satellite A is at...
Two satellites are in circular orbits around the earth. The orbit for satellite A is at a height of 458 km above the earth’s surface, while that for satellite B is at a height of 732 km. Find the orbital speed for (a) satellite A and (b) satellite B.
A 590-kg satellite is in a circular orbit about Earth at a height above Earth equal...
A 590-kg satellite is in a circular orbit about Earth at a height above Earth equal to Earth's mean radius. (a) Find the satellite's orbital speed. m/s (b) Find the period of its revolution. h (c) Find the gravitational force acting on it. N
11) Ch13. # 17 An artificial satellite circles the Earth in a circular orbit at a...
11) Ch13. # 17 An artificial satellite circles the Earth in a circular orbit at a location where the acceleration due to gravity is 9.00 m/s2. Determine the orbital period of the satellite. 12) Ch13. # 23 Comet Halley approaches the Sun to within 0.570 AU, and its orbital period is 75.6 yr. 1 AU = 1.50 x 1011 m). How far from the Sun will Halley
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT