In: Finance
(a) 2 months before the first payment at effective compound annual interest rate i = 0.05; | ||||||||
Assume September 1,2006 as Month 0 | ||||||||
July 1, 2011, Month=58 | ||||||||
Effective annual rate=0.05 | ||||||||
Effective monthly rate=r | ||||||||
(1+r)^12=1.05 | ||||||||
1+r=(1.05^(1/12))= | 1.004074 | |||||||
r=Effective monthly rate= | 0.004074 | |||||||
Present Value (PV) of Cash Flow: | ||||||||
(Cash Flow)/((1+i)^N) | ||||||||
i=Discount Rate=0.004074 | ||||||||
N=Month of Cash Flow | (a) | (b) | .(c) | (d) | ||||
N | A | B=A/(1.004074^N) | C=A/(1.01^N) | D=A/(1.006623^N) | E=A/(1.005654^N) | |||
Date | Month | Cashflow | PV of cash flow at 0.004074 | PV of cash flow at 0.01 | PV of cash flow at 0.006623 | PV of cash flow at 0.005654 | ||
.Sep.1,2006 | 0 | 75 | 75 | 75 | 75 | 75 | ||
.Nov.1,2006 | 2 | 75 | 74.39261 | 73.5222 | 74.01633 | 74.15904 | ||
.Jan.1,2007 | 4 | 75 | 73.79015 | 72.07353 | 73.04557 | 73.32751 | ||
.Mar.1,2007 | 6 | 75 | 73.19256 | 70.65339 | 72.08753 | 72.5053 | ||
.May.1,2007 | 8 | 75 | 72.59981 | 69.26124 | 71.14207 | 71.69231 | ||
.July.1,2007 | 10 | 75 | 72.01186 | 67.89652 | 70.209 | 70.88844 | ||
.Sep.1,2007 | 12 | 75 | 71.42868 | 66.55869 | 69.28817 | 70.09358 | ||
.Nov.1,2007 | 14 | 75 | 70.85021 | 65.24722 | 68.37941 | 69.30763 | ||
.Jan.1,2008 | 16 | 75 | 70.27643 | 63.96159 | 67.48258 | 68.5305 | ||
.Mar.1,2008 | 18 | 75 | 69.7073 | 62.7013 | 66.59751 | 67.76208 | ||
.May.1,2008 | 20 | 75 | 69.14278 | 61.46584 | 65.72404 | 67.00228 | ||
.July.1,2008 | 22 | 75 | 68.58283 | 60.25472 | 64.86204 | 66.25099 | ||
.Sep.1,2008 | 24 | 75 | 68.02741 | 59.06746 | 64.01133 | 65.50813 | ||
.Nov.1,2008 | 26 | 75 | 67.47649 | 57.9036 | 63.17179 | 64.7736 | ||
.Jan.1,2009 | 28 | 75 | 66.93004 | 56.76267 | 62.34326 | 64.04731 | ||
.Mar.1,2009 | 30 | 75 | 66.38801 | 55.64422 | 61.52559 | 63.32916 | ||
.May1,2009 | 32 | 75 | 65.85036 | 54.54781 | 60.71865 | 62.61906 | ||
.July.1,2009 | 34 | 75 | 65.31708 | 53.473 | 59.92229 | 61.91692 | ||
.Sep.1,2009 | 36 | 75 | 64.78811 | 52.41937 | 59.13637 | 61.22266 | ||
.Nov.1,2009 | 38 | 75 | 64.26342 | 51.3865 | 58.36077 | 60.53618 | ||
.Jan.1,2010 | 40 | 75 | 63.74299 | 50.37399 | 57.59533 | 59.8574 | ||
.Mar.1,2010 | 42 | 75 | 63.22677 | 49.38142 | 56.83994 | 59.18623 | ||
.May.1,2010 | 44 | 75 | 62.71473 | 48.40841 | 56.09445 | 58.52259 | ||
.July.1,2010 | 46 | 75 | 62.20683 | 47.45457 | 55.35874 | 57.86638 | ||
.Sep.1,2010 | 48 | 75 | 61.70305 | 46.51953 | 54.63268 | 57.21754 | ||
.Nov.1,2010 | 50 | 75 | 61.20335 | 45.60291 | 53.91614 | 56.57597 | ||
.Jan.1,2011 | 52 | 75 | 60.7077 | 44.70435 | 53.209 | 55.94159 | ||
.Mar.1,2011 | 54 | 75 | 60.21606 | 43.8235 | 52.51113 | 55.31433 | ||
.May.1,2011 | 56 | 75 | 59.7284 | 42.96001 | 51.82242 | 54.6941 | ||
.July.1,2011 | 58 | 75 | 59.24469 | 42.11352 | 51.14274 | 54.08083 | ||
SUM | 2004.711 | 1711.143 | 1870.147 | 1919.73 | ||||
Value of the series on the date of first payment | 2004.71 | |||||||
Value of the series 2 months before the date of first payment | 1988.48 | (2004.71/(1.004074^2) | ||||||
(b) 10 months before the first payment at nominal interest rate i(12) = 0.12 compounded monthly; | ||||||||
Monthly interest =(0.12/12)= | 0.01 | |||||||
Value of the series on the date of first payment | 1711.14 | |||||||
Value of the series ten months before the date of first payment | 1549.08 | (1711.14/(1.01^10) | ||||||
(c) 2 months after the final payment at nominal discount rate d(4) = 0.08 compounded quarterly | ||||||||
Quarterly interest=(8/4)=2%= | 0.02 | |||||||
Effective annualinterest =(1.02^4)-1 | 0.082432 | |||||||
Effective Monthly Interest =r | ||||||||
(1+r)^12=1.082432 | ||||||||
1+r=(1.082432^(1/12) | 1.006623 | |||||||
Effective Monthly Interest =r= | 0.006623 | |||||||
Value of the series on the date of first payment | 1870.15 | |||||||
Value of the series 2 months after final payment ie(58+2)=60 months after first payment | 2778.99 | (1870.15*(1.006623^60) | ||||||
(d) one year after the final payment at annual force of interest δ = 0.07. |
||||||||
Monthly effective interest=r | ||||||||
(1+r)^12=1.07 | ||||||||
1+r=(1.07^(1/12)= | 1.005654 | |||||||
Monthly effective interest=r= | 0.005654 | |||||||
Value of the series on the date of first payment | 1919.73 | |||||||
Value of the series one year after final payment ie, (58+12)70months after first payment | 2848.66 | (1919.73*(1.005654^70) | ||||||