In: Statistics and Probability
Hexavalent chromium has been identified as an inhalation carcinogen and an air toxin of concern in a number of different locales. An article gave the accompanying data on both indoor and outdoor concentration (nanograms/m3) for a sample of houses selected from a certain region.
House | |||||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
Indoor | 0.11 | 0.12 | 0.13 | 0.16 | 0.16 | 0.16 | 0.17 | 0.18 | 0.19 |
Outdoor | 0.25 | 0.64 | 0.43 | 0.50 | 0.93 | 0.31 | 0.45 | 0.80 | 0.82 |
House | ||||||||
---|---|---|---|---|---|---|---|---|
10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |
Indoor | 0.19 | 0.21 | 0.21 | 0.22 | 0.22 | 0.22 | 0.22 | 0.23 |
Outdoor | 0.24 | 0.28 | 0.28 | 1.51 | 0.62 | 0.25 | 0.17 | 0.98 |
House | ||||||||
---|---|---|---|---|---|---|---|---|
18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | |
Indoor | 0.24 | 0.26 | 0.26 | 0.27 | 0.27 | 0.29 | 0.30 | 0.32 |
Outdoor | 1.55 | 0.86 | 0.48 | 0.08 | 0.50 | 0.84 | 0.45 | 1.20 |
House | ||||||||
---|---|---|---|---|---|---|---|---|
26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | |
Indoor | 0.32 | 0.33 | 0.38 | 0.43 | 0.44 | 0.49 | 0.58 | 0.66 |
Outdoor | 0.44 | 0.23 | 0.33 | 1.22 | 0.66 | 0.72 | 0.95 | 0.32 |
Calculate a confidence interval for the population mean difference between indoor and outdoor concentrations, μindoor − μoutdoor, using a confidence level of 95%. (Round your answers to two decimal places.)
Interpret the interval.
(b) If a 34th house were to be randomly selected from the population, between what values would you predict the difference in concentrations to lie? (Round your answers to two decimal places.)
Indoor | Outdoor | Difference |
0.11 | 0.25 | -0.14 |
0.12 | 0.64 | -0.52 |
0.13 | 0.43 | -0.30 |
0.16 | 0.50 | -0.34 |
0.16 | 0.93 | -0.77 |
0.16 | 0.31 | -0.15 |
0.17 | 0.45 | -0.28 |
0.18 | 0.80 | -0.62 |
0.19 | 0.82 | -0.63 |
0.19 | 0.24 | -0.05 |
0.21 | 0.28 | -0.07 |
0.21 | 0.28 | -0.07 |
0.22 | 1.51 | -1.29 |
0.22 | 0.62 | -0.40 |
0.22 | 0.25 | -0.03 |
0.22 | 0.17 | 0.05 |
0.23 | 0.98 | -0.75 |
0.24 | 1.55 | -1.31 |
0.26 | 0.86 | -0.60 |
0.26 | 0.48 | -0.22 |
0.27 | 0.08 | 0.19 |
0.27 | 0.50 | -0.23 |
0.29 | 0.84 | -0.55 |
0.30 | 0.45 | -0.15 |
0.32 | 1.20 | -0.88 |
0.32 | 0.44 | -0.12 |
0.33 | 0.23 | 0.10 |
0.38 | 0.33 | 0.05 |
0.43 | 1.22 | -0.79 |
0.44 | 0.66 | -0.22 |
0.49 | 0.72 | -0.23 |
0.58 | 0.95 | -0.37 |
0.66 | 0.32 | 0.34 |
Sample mean of the difference using excel function AVERAGE(), x̅d = -0.3439
Sample standard deviation of the difference using excel function STDEV.S(), sd = 0.3868
Sample size, n = 33
a) 95% Confidence interval :
At α = 0.05 and df = n-1 = 32, two tailed critical value, t-crit = T.INV.2T(0.05, 32) = 2.037
Lower Bound = x̅d - t-crit*sd/√n = -0.3439 - 2.037 * 0.3868/√33 = -0.48
Upper Bound = x̅d + t-crit*sd/√n = -0.3439 + 2.037 * 0.3868/√33 = -0.21
-0.48 < µd < -0.21
b) 95% prediction interval :
At α = 0.05 and df = n-1 = 32, two tailed critical value, t-crit = T.INV.2T(0.05, 32) = 2.037
Lower Bound = x̅d - t-crit*sd/√(1+1/n) = -0.3439 - 2.037 * 0.3868/√(1+1/33) = -1.12
Upper Bound = x̅d + t-crit*sd/√(1+1/n) = -0.3439 + 2.037 * 0.3868/√(1+1/33) = 0.43
-1.12 < µd < 0.43