In: Economics
Year |
Gold_Price |
CPI |
NYSE |
|
1975 |
139.29 |
24.68 |
503.73 |
|
1976 |
133.77 |
26.1 |
612.01 |
|
1977 |
161.1 |
27.79 |
555.12 |
|
1978 |
208.1 |
29.92 |
566.96 |
|
1979 |
459 |
33.28 |
655.04 |
|
1980 |
594.9 |
37.79 |
823.27 |
|
1981 |
400 |
41.7 |
751.91 |
|
1982 |
447 |
44.25 |
856.79 |
|
1983 |
380 |
45.68 |
1006.41 |
|
1984 |
308 |
47.64 |
1019.11 |
|
1985 |
327 |
49.33 |
1285.66 |
|
1986 |
390.9 |
50.27 |
1465.31 |
|
1987 |
486.5 |
52.11 |
1461.61 |
|
1988 |
410.15 |
54.23 |
1652.25 |
|
1989 |
401 |
56.85 |
2062.31 |
|
1990 |
386.2 |
59.92 |
1908.45 |
|
1991 |
353.15 |
62.46 |
2426.04 |
|
1992 |
333 |
64.35 |
2539.32 |
|
1993 |
391.75 |
66.25 |
2739.44 |
|
1994 |
383.25 |
67.98 |
2653.37 |
|
1995 |
387 |
69.88 |
3484.15 |
|
1996 |
369 |
71.93 |
4148.07 |
|
1997 |
287.05 |
73.61 |
5405.19 |
|
1998 |
288.7 |
74.76 |
6299.93 |
|
1999 |
290.25 |
76.39 |
6876.11 |
|
2000 |
272.65 |
78.97 |
6945.57 |
|
2001 |
276.5 |
81.2 |
6236.39 |
|
2002 |
342.75 |
82.49 |
5000.01 |
|
2003 |
417.25 |
84.36 |
6440.31 |
|
2004 |
435.6 |
86.62 |
7250.06 |
|
2005 |
513 |
89.56 |
7753.95 |
|
2006 |
635.7 |
92.45 |
9139.02 |
|
2007 |
836.5 |
95.09 |
9740.32 |
|
2008 |
869.75 |
98.74 |
5757.05 |
|
2009 |
1087.5 |
98.39 |
7184.96 |
|
2010 |
1420.25 |
100 |
7964.02 |
|
2011 |
1531 |
103.16 |
7477.03 |
|
2012 |
1664 |
105.29 |
8443.51 |
|
2013 |
1204.5 |
106.83 |
10400.33 |
|
2014 |
1199.25 |
108.57 |
10839.24 |
|
2015 |
1060 |
108.7 |
10143.42 |
Use the data in Table 3.7 to estimate the two equations given previously, and use the output to answer the questions below related to each equation,
From the first equation
1. Goldpricet=β1+β2CPIt+ut
β1= Answer (2 decimals)
β2= Answer (2 decimals)
r2= Answer (4 decimals)
SSR= Answer (0 decimals)
From the second equation,
2. NYSEindext=β1+β2CPIt+ut
β1= Answer (2 decimals)
β2= Answer (2 decimals)
r2= Answer (4 decimals)
SST= Answer (0 decimals
1. Running regression using Gold_Price as Y and CPI as X we get results as below
SUMMARY OUTPUT | ||||||
Regression Statistics | ||||||
Multiple R | 0.73 | |||||
R Square | 0.5287 | |||||
Adjusted R Square | 0.52 | |||||
Standard Error | 270.82 | |||||
Observations | 41 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 1 | 3208987 | 3208986.55 | 43.75 | 0.00 | |
Residual | 39 | 2860429.69 | 73344.35 | |||
Total | 40 | 6069416.24 | ||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
Intercept | -222.88 | 124.03 | -1.80 | 0.08 | -473.75 | 28.00 |
CPI | 11.17 | 1.69 | 6.61 | 0.00 | 7.76 | 14.59 |
Gold_Pricet= -222.88+11.17*CPIt+Ut |
β1= -222.88 |
β2= 11.17 |
r2= 0.5287 |
SSR=3208986 |
2.
NYSEindext = -4182.77+124.39*CPIt+Ut |
β1=-4182.77 |
β2= 124.39 |
r2= 0.8856 |
SST=448918024 |
SUMMARY OUTPUT | ||||||
Regression Statistics | ||||||
Multiple R | 0.94 | |||||
R Square | 0.8857 | |||||
Adjusted R Square | 0.88 | |||||
Standard Error | 1147.18 | |||||
Observations | 41.00 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 1 | 397593394.33 | 397593394.33 | 302.12 | 0.00 | |
Residual | 39 | 51324629.99 | 1316016.15 | |||
Total | 40 | 448918024 | ||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
Intercept | -4182.77 | 525.38 | -7.96 | 0.00 | -5245.45 | -3120.09 |
CPI | 124.39 | 7.16 | 17.38 | 0.00 | 109.91 | 138.86 |