Question

In: Statistics and Probability

The variables in the file are Price -Average selling price of houses Location -A code to...

The variables in the file are

Price -Average selling price of houses

Location -A code to indicate the location of the house

Condition -A code to indicate the physical condition of the house

Bedrooms Number of bedrooms in the house

Bathrooms Number of bathrooms in the house

Other Rooms Number of other rooms in the house

(a) Run a regression of Price on Location, Condition, Bedrooms, Bathrooms and Other Rooms. Please attach your Excel file.

(b) What variables seem to be important for buyers of houses? Please explain.

(c) Based on your regression results, if you wanted a low selling price on a house you wanted to purchase, what would you look for? Please explain.

(d) Run a regression of Price on Bedroom, Bathrooms and Other Rooms. Please attach your Excel file

(e) Compare your regression results in (i) to the regression results in (ii). Which would you consider to be a better model and why?

Price   Location   Condition   Bedrooms   Bathrooms   Other Rooms
67000   2   2   2   1   2
68000   2   2   3   1   3
68000   2   2   3   1   3
69000   2   3   2   1   3
72000   2   2   4   2   5
75000   3   4   2   1   3
76000   2   3   2   1   2
76900   2   3   3   1   3
77000   2   3   2   3   5
78000   3   2   2   1   2
79000   2   3   3   2   3
80000   2   3   3   1.5   2
80000   2   3   3   1   2
81000   3   3   2   1   3
82000   2   3   3   1.5   3
83000   2   3   3   1   3
84000   2   2   3   1   3
84000   2   3   3   1.5   3
86250   1   4   4   2   3
87000   3   3   3   2   2
89500   3   2   3   2   2
90400   2   4   4   2   4
90500   3   3   3   1.5   3
91000   3   3   3   2   3
91500   3   1   4   2   3
91500   3   1   4   2   3
92500   3   3   3   1.5   4
93500   2   3   3   2   3
93500   2   3   4   2   2
94000   1   2   3   1.5   3
95500   3   3   3   2   2
96000   2   4   3   2   3
96000   2   3   3   2   3
97900   3   4   3   2   3
98000   3   4   3   2   3
98000   2   4   3   2   4
98000   3   4   3   2   3
99000   2   3   4   2   4
99000   3   2   4   2   4
99000   3   3   3   2   3
102000   3   3   4   2   3
102000   2   3   3   1.5   3
102000   3   3   4   2   3
102000   3   4   3   1.5   3
103000   3   3   3   2   3
103000   3   2   3   1.5   2
103500   3   2   3   2   5
103500   3   3   3   2   5
105000   3   3   3   2   5
105000   3   4   3   1.5   3
108000   2   4   3   2   3
112000   3   2   4   2   4
112500   3   4   3   2   4
114900   2   2   5   2   3
115500   3   4   4   2   3
120500   4   5   3   2   4
122000   2   2   3   3   4
125500   3   3   4   2.5   3
127000   2   4   3   2.5   4
128000   4   4   3   2   4
129900   3   4   4   2.5   3
130350   3   3   3   2   4
132350   3   4   3   2   4
133000   3   3   3   2   4
134500   4   3   3   2   3
135500   3   3   3   3   3
135500   4   3   3   3   3
136500   4   4   3   2   4
136500   4   3   3   2   4
137400   3   3   4   2.5   4
137400   4   3   4   2.5   4
137500   4   4   3   2   4
139500   3   4   4   2.5   4
144000   4   3   4   2.5   5
145000   4   3   3   2   3
149000   4   4   3   2   2
155000   4   4   4   2   5
154000   4   2   3   2   4
155500   3   5   3   2.5   3
156500   4   5   3   2   3
163000   4   3   4   2   4
165000   5   4   4   2   2
167000   5   4   4   2   2
168700   3   5   3   2.5   5
169900   4   5   4   2.5   4
169900   4   5   3   2.5   5
169900   4   5   3   2.5   5
176000   4   5   4   2.5   4
179000   4   5   4   2.5   5
179000   4   5   4   2.5   5
179500   4   4   3   2.5   3
179500   5   4   3   2.5   3
187500   4   3   4   2.5   4
203000   4   5   4   3   6
220000   5   5   4   3.5   5
222000   5   4   3   3.5   6
250000   5   4   4   2.5   4
250000   5   5   4   2.5   4
255000   5   5   4   2.5   4
255000   5   5   3   2.5   4

Solutions

Expert Solution

The Regression calculation done in Excel is given below

Regression Statistics
Multiple R 0.9085
R Square 0.8253
Adjusted R Square 0.8161
Standard Error 19116.0451
Observations 100
ANOVA
df SS MS F Significance F
Regression 5 1.62325E+11 3.2465E+10 88.84234686 4.58807E-34
Residual 94 34349778889 365423180
Total 99 1.96675E+11
Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept -64558.5034 12387.5357 -5.2116 0.0000 -89154.2459 -39962.7608 -89154.2459 -39962.7608
Location   25533.3487 2474.4568 10.3188 0.0000 20620.2568 30446.4406 20620.2568 30446.4406
Condition   10124.5722 2340.8940 4.3251 0.0000 5476.6723 14772.4721 5476.6723 14772.4721
Bedrooms   8842.6631 3572.1941 2.4754 0.0151 1749.9881 15935.3382 1749.9881 15935.3382
Bathrooms   17202.5553 5030.2405 3.4198 0.0009 7214.8949 27190.2157 7214.8949 27190.2157
Other Rooms 3173.6549 2464.2430 1.2879 0.2009 -1719.1573 8066.4671 -1719.1573 8066.4671

a) The regression line is

Price = -64558 + 25533 * Location + 10124 * Condition + 8842 * Bedrooms + 17202 * Bathroom + 3173 * Other Rooms

b) The top two critical factors for buyer are Location and Bathroom

c) If I have to purchase a house with low selling price I will ignore the coefficients which increase the price of the house. The top two critical factors explain above, will be ignored and make the value = 0. So the price of the house will automatically come down. So I will only consider Other Rooms, then Bedrooms and lastly Condition and ignore location and bathroom

d)

SUMMARY OUTPUT
Regression Statistics
Multiple R 0.701814009
R Square 0.492542903
Adjusted R Square 0.476684868
Standard Error 32243.24002
Observations 100
ANOVA
df SS MS F Significance F
Regression 3 9.69E+10 3.23E+10 31.05952 4.03954E-14
Residual 96 9.98E+10 1.04E+09
Total 99 1.97E+11
Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept -19468.36015 19564.65 -0.99508 0.3222 -58303.87522 19367.15493 -58303.87522 19367.15493
Bedrooms   9141.840464 5978.095 1.529223 0.129498 -2724.5851 21008.26603 -2724.5851 21008.26603
Bathrooms   45704.33258 7678.179 5.952497 4.31E-08 30463.26841 60945.39675 30463.26841 60945.39675
Other Rooms 6072.784488 4118.138 1.474643 0.143581 -2101.655472 14247.22445 -2101.655472 14247.22445

The new Regression line is

Price = -19648 + 9141 * Bedrooms + 45704 * Bathrooms + 6072 * OtherRooms

e) The Regression line in 1 better, as the R2 value is closer to 1 in regression equation 1 showing a better fit of the data points.


Related Solutions

For the 22 houses sold in Macomb, the average selling price was 185,000$ with standard deviation...
For the 22 houses sold in Macomb, the average selling price was 185,000$ with standard deviation of 45,000$. For the 53 houses sold in Peoria, the average selling price was 200,000$ with standard deviation of 35,000$. At a α = 0.10 level of significance, is there evidence that the mean house selling price in Macomb is less than Peoria? (a) Hypothesis: H0 : Ha : (b) Test Statistics= (c) Pvalue= (d) The degrees of freedom, d.f= (e) The pooled standard...
Effects on Selling Price of Houses Square Feet Number of Bedrooms Age Selling Price 1125 2...
Effects on Selling Price of Houses Square Feet Number of Bedrooms Age Selling Price 1125 2 1 121500 1461 3 4 123600 1527 3 8 158100 1719 4 9 214800 1745 4 9 215500 2197 4 11 255000 2414 4 13 257200 28302830 4 14 262200 30153015 5 14 282400 Determine if a statistically significant linear relationship exists between the independent and dependent variables at the 0.01 level of significance. If the relationship is statistically significant, identify the multiple regression...
A Realtor is interested in modeling the selling price of houses based on the square footage...
A Realtor is interested in modeling the selling price of houses based on the square footage (X1), the age of the house (X2) and the number of bedrooms (X3). The data (below) was collected in the two largest cities in Arkansas and is given in an excel file. Follow the Minitab instructions on blackboard to answer the questions below. 1. Check the model assumptions a. Does the plot of Residuals vs. Fitted Values indicate that the assumption of constant variance...
A Realtor is interested in modeling the selling price of houses based on the square footage...
A Realtor is interested in modeling the selling price of houses based on the square footage and the age of the house. The data was collected in the two largest cities in Arkansas and is presented here.           Square footage X1                   Age in years X2   style           Selling price Y                    775                                37               Traditional 28,000                    700                                49               Traditional 34,000                    720                                54               Traditional 34,500                    864                                37               Rambler      39,900                    650                                35               Traditional 40,000                    780                                79               Victorian    41,500...
The file Stat8_prob3.txt contains data of 100 Tarrant County houses (in 1900) on variables such as value (VALUE)
  The file Stat8_prob3.txt contains data of 100 Tarrant County houses (in 1900) on variables such as value (VALUE), size in square feet (SIZE), a physical condition index (CONDITION), and a depreciation factor (DEPRECIATION). (a) Fit the model to predict VALUE using SIZE, CONDITION, and DEPRECIATION as the predictor variables. (b) Plot the residuals e against the fitted values y^i. What departures from the regression model assumptions can you see? (c) If any of the assumptions in part (b) have...
The following data give the selling price and square footage of houses that have sold in...
The following data give the selling price and square footage of houses that have sold in Bend, OR in the past 6 months. Selling Price ($) Square Footage 84,000 1,670 79,000 1,339 91,500 1,712 120,000 1,840 127,500 2,300 132,500 2,234 145,000 2,311 164,000 2,377 155,000 2,736 168,000 2,500 172,500 2,500 174,000 2,479 175,000 2,400 177,500 3,124 184,000 2,500 195,500 4,062 195,000 2,854 Graph the data to see whether a linear equation might describe the relationship between selling price and the...
The following data give the selling price, square footage, number of bedrooms, and age of houses...
The following data give the selling price, square footage, number of bedrooms, and age of houses that have sold in a neighborhood in the past 6 months. Develop three regression models to predict the selling price based upon each of the other factors individually. Which of these is best? use 1 for yes and 0 for no develop a regression model to predict selling price based on the square footage and number of bedrooms. Use this to predict the selling...
The following data give the selling price, square footage, number of bedrooms, and age of houses...
The following data give the selling price, square footage, number of bedrooms, and age of houses that have sold in a neighborhood in the past 6 months. Develop three regression models to predict the selling price based upon each of the other factors individually. Which of these is best? Selling Price Square Footage Bedrooms Age (Years) 84000 1670 2 30 79000 1339 2 25 91500 1712 3 30 120000 1840 3 40 127500 2300 3 18 132500 2234 3 30...
Suppose the following data were collected from a sample of 1515 houses relating selling price to...
Suppose the following data were collected from a sample of 1515 houses relating selling price to square footage and the architectural style of the house. Which of the following is the best equation to use relating the selling price of a house to square footage and the style of the house? Copy Data Housing Prices Selling Price Square Footage Colonial (1 if house is Colonial style, 0 otherwise) Ranch (1 if house is Ranch style, 0 otherwise) Victorian (1 if...
I would like you to think about what factors have an impact on the selling price of houses in an area.
I would like you to think about what factors have an impact on the selling price of houses in an area. In more technical terms, the selling price of houses is our dependent variable. For your contribution, you must make suggestions for independent variables that we should include in a linear regression. You must also indicate if you think that your variable will increase or decrease the price along with an explanation why you think that your X variable will...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT